首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python3用ARIMA模型进行时间序列预测

接下来,让我们看看如何使用ARIMA模型进行预测。 滚动预测ARIMA模型 ARIMA模型可用于预测未来的时间步长。...我们可以在ARIMAResults  对象上使用predict()函数  进行预测。它接受时间步长索引作为参数进行预测。这些索引与用于进行预测的训练数据集的开始有关。...如果我们在训练数据集中使用100个观察值来拟合模型,则将用于进行预测的下一个时间步长的索引指定为预测函数  start = 101,end = 101。这将返回一个包含一个包含预测的元素的数组。...综上所述,以下是ARIMA模型在Python中进行滚动预测的示例。 运行示例将在每次迭代时打印预测值和期望值。 我们还可以计算预测的最终均方误差得分(MSE),为其他ARIMA配置提供比较点。...如何使用ARIMA模型进行样本预测之外的预测。 您对ARIMA或本教程有任何疑问吗? 在下面的评论中提出您的问题,我们会尽力回答。

2.3K20

python3用ARIMA模型进行时间序列预测

接下来,让我们看看如何使用ARIMA模型进行预测。 滚动预测ARIMA模型 ARIMA模型可用于预测未来的时间步长。...我们可以在ARIMAResults 对象上使用predict()函数 进行预测。它接受时间步长索引作为参数进行预测。这些索引与用于进行预测的训练数据集的开始有关。...如果我们在训练数据集中使用100个观察值来拟合模型,则将用于进行预测的下一个时间步长的索引指定为预测函数 _start = 101,end = 101_。这将返回一个包含一个包含预测的元素的数组。...综上所述,以下是ARIMA模型在Python中进行滚动预测的示例。 运行示例将在每次迭代时打印预测值和期望值。 我们还可以计算预测的最终均方误差得分(MSE),为其他ARIMA配置提供比较点。...---- 本文选自《python3用ARIMA模型进行时间序列预测》。

1.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python3《机器学习实战》学习笔记(十一):线性回归基础篇之预测鲍鱼年龄

    前言 前面的文章介绍了很多分类算法,分类的目标变量是标称型数据,而本文将会对连续型的数据做出预测。...主要讲解简单的线性回归和局部加权线性回归,并通过预测鲍鱼年龄的实例进行实战演练。 二 什么是回归? 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。...一旦有了这些回归系数,再给定输入,做预测就非常容易了。具体的做法是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值。...显而易见,如果模型欠拟合将不能取得好的预测效果。所以有些方法允许在估计中引入一 些偏差,从而降低预测的均方误差。...在该方法中,我们给待预测点附近的每个点赋予一定的权重。与kNN一样,这种算法每次预测均需要事先选取出对应的数据子集。该算法解除回归系数W的形式如下: ?

    76710

    多元时序预测:独立预测 or 联合预测

    今天介绍一篇南大今年4月份发表的文章,主要探讨了多元时间序列预测问题中,独立预测(channel independent)和联合预测(channel dependent)二者效果的差异、背后的原因以及优化方法...Independent Strategy for Multivariate Time Series Forecasting 下载地址:https://arxiv.org/pdf/2304.05206v1.pdf 1、独立预测和联合预测...多元时间序列预测问题中,从多变量建模方法的维度有两种类型,一种是独立预测(channel independent,CI),指的是把多元序列当成多个单变量预测,每个变量分别建模;另一种是联合预测(channel...从下面的实验结果可以看到,CI相比CD,在绝大多数预测窗口长度和数据集上,效果都是提升的。 为什么CI方法在实际应用中比CD效果更好、更稳定呢?...正则化:引入一个正则化损失,用序列减去最近的样本点作为历史序列输入模型进行预测,同时使用平滑约束预测结果,让预测结果和最近邻的观测值偏差不要太大,使得预估结果更平; 低秩分解:将全连接参数矩阵分解成两个低阶矩阵

    1.4K20
    领券