首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    重磅!国家标准《信息技术人工智能知识图谱技术框架》征求意见稿发布,35页pdf详细规定知识图谱技术框架

    ---- 新智元报道   作者:专知 【新智元导读】本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 来自“ 知识图谱标准化” 本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 本文件给出了知识图谱的技术

    02

    攻击推理-安全知识图谱在自动化攻击行为提取上的应用

    当前企业环境面临的攻击越来越趋于隐蔽、长期性,为了更好的针对这些攻击进行有效的检测、溯源和响应,企业通常会部署大量的终端设备。安全运营人员需要通过分析这些日志来用来实现攻击检测、溯源等。利用安全知识图谱与攻击推理进行评估溯源,在相关专题文章[1,2,3]中都有介绍,其中[1]是通过挖掘日志之间的因果关系来提高威胁评估的结果,[2]利用图表示学习关联上下文提高检测与溯源的准确率,[3]主要是介绍了知识图谱在内网威胁评估中的应用。但这些工作把均是把异常日志当作攻击行为来处理。基于异常检测方法无论是在学术领域还是工业上都有了一些经典的应用如异常流量检测、UEBA(用户与实体行为分析)等。Sec2graph[4]主要是对网络流量进行建模,构建了安全对象图并利用图自编码器实现对安全对象图中的异常检测,并把异常作为可能的攻击行为进行进一步分析。Log2vec[5]通过分析终端日志的时序关系构建了异构图模型,利用图嵌入算法学习每个节点的向量表示,并利用异常检测算法检测异常行为。UNICORN[6]方法是基于终端溯源图[9]为基础提取图的概要信息,利用异常检测方法对图概要信息进行分析检测。之前的攻击推理专题中的文章[9]也是利用图异常检测算法进行攻击者威胁评估和攻击溯源。但是这些方法本质上都是基于这么一个假设:攻击行为与正常用户行为是有区别的。这些方法检测出来的结果只能是异常,异常行为与攻击行为本身有很大的语义鸿沟,同时这些异常缺少可解释性。

    02

    【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

    【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第三篇专知主题荟萃-知识图谱知识资料全集荟萃 (入门/进阶/论文/代码/数据/专家等),请大家查看!专知访问www.zhuan

    08
    领券