数据分布图简介 绘制基本直方图 基于分组的直方图 绘制密度曲线 绘制基本箱线图 往箱线图添加槽口和均值 绘制2D等高线 绘制2D密度图 数据分布图简介 中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。 “望”的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的。R语言提供了多种图表对数据分布进行描述
中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。
中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。
网址:http://www.cnblogs.com/muchen/p/5430536.html
在sql中巧用窗口函数可以解决很多复杂的问题,窗口函数有4种函数类型:排名函数、偏移函数、聚合函数和分布函数,详细介绍可以浏览:
本文介绍具有分组惩罚的线性回归、GLM和Cox回归模型的正则化路径。这包括组选择方法,如组lasso套索、组MCP和组SCAD,以及双级选择方法,如组指数lasso、组MCP
作为第一步,从一个不包含协变量的空模型开始 ( 点击文末“阅读原文”获取完整代码数据******** )。
排序函数,按照某(几)个指定的列按照升(降)序排列重新排列数据集,参数ascending = False,降序排列,ascending = True,升序排列;
生存分析(Survival Analysis)是研究生存现象和响应时间数据及其统计规律的一种统计学方法,是关联表型与患者预后的重要手段。今天,我们带领大家,看看如何用R语言做生存分析,快速锁定目标基因。
最近,有一种说法:“中国经济发展的命脉就是石油和航线”。因此,航线的重要性不言而喻。
在R中很多内置函数,用于数据框的基本操作,比如转换、分组、排序、拼接等,常见的函数有rbind(),cbind(),dplyr(),tidyr(),reshape2,tidyverse(),base()等,其中,base()是R语言内置包,无需安装。数据处理是ggplot2绘图的基础,同时也是R语言中花费时间较多的工作之一,提高数据处理的效率能够很快的得到可靠美观的图片。
该模型以珊瑚覆盖层为因变量(elkhorn_LAI),草食动物种群和深度为固定效应(c。urchinden,c.fishmass,c.maxD)和调查地点作为随机效应(地点)。 。 注意:由于食草动物种群的测量规模存在差异,因此我们使用标准化的值,否则模型将无法收敛。我们还使用了因变量的对数。我正在根据这项特定研究对数据进行分组。
在数据分析中,往往会遇到各种复杂的数据处理操作:分组、排序、过滤、转置、填充、移动、合并、分裂、去重、找重、填充等操作。这时候R语言就是一个很好的选择:R可以高效地、优雅地解决数据处理操作。(本章节为R语言入门第二部分总结篇:数据操作)
前面给大家介绍了☞【R语言】rep函数的使用,今天我们来举几个数据分析中的应用,例如差异表达分析时,样本类型变量,我们就可以使用rep函数来生成。
我们已经学习了如何处理混合效应模型。本文的重点是如何建立和_可视化_ 混合效应模型的结果
本文主要表达如何使用ggplot2绘制线图。线图一般表达的目的是:某个因变量随着自变量改变而变化的趋势。因变量可以为数值型变量或者分类变量。可供选的函数有: geom_line(), geom_step(), geom_path() 举例来说:因变量可以是
R语言与Python的Pandas中具有非常丰富的数据聚合功能,今天就跟大家盘点一下这些函数的用法。 R语言: transform mutate aggregate grouy_by+summar
之前的几期推文模仿了来自于论文 Core gut microbial communities are maintained by beneficial interactions and strain
我最早接触的高通量数据就是RNA-seq,后来接触的也基本是高通量测序结果而不是芯片数据,因此我从来没有分析过一次芯片数据,而最近有一个学员在看生信技能树在腾讯课堂发布的课程GEO数据库表达芯片处理之R语言流程(阅读原文购买)遇到了问题问我请教,为了解决这个问题,我花了一个晚上时间学习这方面的分析。
今天遇到一个分组求均值的问题,愣是看不出问题出在哪了,大家帮我看看文末的代码是哪里出问题了,或者留言说一下自己分组求均值在R语言里是如何实现的。
本文的临床数据的生存分析,并没有使用TCGA数据库里面的病人信息,而是自己收集病人样本,记录其临床信息,随访时间等等。还采用IHC等病理技术手段来量化感兴趣的基因的表达量情况,最后全部使用自己的数据做出来了下面的生存分析曲线。
前面整理了100多套R代码,因为时间跨度有点长,而且公众号写作后没办法修改,所以安排实习生进行代码审查,看看是不是确实复制粘贴就可以运行。
昨天我们介绍了使用Excel进行直方图的绘制,今天我们来介绍R语言和Python下的绘制方法。
大家在学习R语言的时候,大多参考《R语言实战》这本书,但这本书年代过于久远(中文第二版是2016年),主要着力点也是在R base上,R语言可视化的ggplot2包也只是简要介绍,而对于tidyverse包,《R语言实战》并未涉及,这也导致R语言的学习难度增加,今天我们给大家引入tidyverse包的学习。
https://www.bilibili.com/video/BV1B5411W7HU
这篇论文数据分析和可视化的部分用到的数据和代码全部放到了github上 https://github.com/karkman/crassphage_project
很多数据集本身非常复杂,按照标准的建模流程难以进行合适的处理,因此,需要构建特别的模型,线性模型提供了一个灵活的模型框架,在此框架内,我们得以对上述大部分复杂数据集拟合模型。
apply函数只能用于处理矩阵类型的数据,也就是说所有的数据必须是同一类型。因此要使用apply函数的话,需要将数据类型转换成矩阵类型。
由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率。于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求。
这部分介绍一下R语言中的聚合窗口函数,R语言中的聚合窗口函数与sql中的窗口函数有点差异,R语言中的相同记录的累计求和累计平均不再相同。
我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。关于这套临床数据的下载可以参考
ggplot2包中的主要功能是ggplot(),它可用于使用数据和x / y变量初始化绘图系统。 例如,以下R代码将数据集初始化为ggplot,然后将一个图层(geom_point())添加到ggplot上,以创建x = Sepal.Length的散点图y = Sepal.Width:
比如,一个课题是为了说明 BACE2 基因在癌症研究领域很重要,就可以使用两个数据库(TCGA and GTEx),做出差异和生存的图表来辅助自己的研究。
问题: 背景金融小硕,想学习R语言却不知道应该如何学习,应该按何种步骤,看哪些书或者视频资料等东西,所以提问这个问题,希望知道学习R语言的一般过程是怎样的,谢谢大家~~ 希望大家可以按以下的内容来回答,如不适合则无视。在每个阶段应该看哪些书,有哪些网络上有的视频资料比较好,应该从事什么样的练习加以巩固。 http://www.zhihu.com/question/21654166 Evan 北京大学 回答: 我当初学习R的时候在网上搜到一些R语言学习路线,我在微信圈,微信公众平台上也见多次
apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是初学者玩不转的一类核心函数。很多R语言新手,写了很多的for循环代码,也不愿意多花点时间把apply函数的使用方法了解清楚,最后把R代码写的跟C似得。
原始研究中常常采用亚组分析的形式探索入组患者潜在的差异。事实上,亚组分析也广泛应用于meta分析中,是meta分析中处理异质性的常用方法之一。亚组分析通常从临床异质性和方法学异质性的角度探讨异质性的来源,可以解决同质性研究才能合并效应量的问题。可以按不同试验设计方案、纳入研究质量、参加人群特征、给药方式,治疗时间的长短、发表年代等,分成亚组进行分析。Meta分析中的亚组分析每次只能按照一个变量进行亚组分析,并且对每个亚组都要进行效应量的合并;若要对两个以上的变量进行分析,则应该采用Meta回归的方法。
今天我们继续做题,由于整个题目按照从易到难排列,所以今天的题目并不会很难。先看一下预览:
毫无疑问,处理数据的首要条件是理解数据从产生,对应到我们这个系列,也就是了解三维基因组的背景知识,如下:
很久没有更新公众号了,这里大猫的R语言课堂给大家说声抱歉。由于两位作者这半年以来实在是太忙了,捱到了国庆假期,终于抽出时间来更新公众号,在此也祝各位水友双节快乐!!!
饼图前面我们刚刚讲过,不少同学拿到代码以后跃跃欲试,都能顺利绘制出来。不过,有些爱动脑的同学会问,饼图二维的我能够做出来,那三维的该怎么画? 经常在一些高级图形中看到三维饼图,自己也想做一下,这样可视化的档次感觉瞬间就高级了。
apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是使用者玩不转一类核心函数。
如果你是一位数据分析师,必须学习并掌握结构化查询语言——SQL。但它主要用于查询检索数据,所以往往还需要掌握一门编程语言。
我是R语言的忠实粉丝,并且靠它吃饭。特别提一下Tidyverse,它是一个功能强大、简洁易懂且文档齐全的数据科学平台。我在此向每一位初学者强烈推荐免费的在线电子书R for Data Science。
建立重庆市经济指标发展体系,以重庆市一小时经济圈作为样本,运用因子分析方法进行实证分析,在借鉴了相关评价理论和评价方法的基础上,本文提取出经济规模、人均发展水平、经济发展潜力、3个主因子,从重庆市统计年鉴选取8个指标构成的指标体系数据对重庆市38个区县经济发展基本情况的八项指标进行分析,并基于主因子得分矩阵对重庆市38个区县进行聚类分析
最近我们被客户要求撰写关于主成分PCA、因子分析、聚类的研究报告,包括一些图形和统计输出。
最近我们被客户要求撰写关于地区经济研究分析的研究报告,包括一些图形和统计输出。 建立重庆市经济指标发展体系,以重庆市一小时经济圈作为样本,运用因子分析方法进行实证分析,在借鉴了相关评价理论和评价方法的基础上,本文提取出经济规模、人均发展水平、经济发展潜力、3个主因子,从重庆市统计年鉴选取8个指标构成的指标体系数据对重庆市38个区县经济发展基本情况的八项指标进行分析,并基于主因子得分矩阵对重庆市38个区县进行聚类分析。
本文将关注R语言中的LASSO(Least Absolute Shrinkage and Selection Operator)惩罚稀疏加法模型(Sparse Additive Model,简称SPAM)。SPAM是一种用于拟合非线性数据的强大工具,它可以通过估计非线性函数的加法组件来捕捉输入变量与响应变量之间的复杂关系。
在R语言中可以使用png()等函数生成图片,例如: png(“aa.png”)可以生成图片。
作为开篇的介绍,这好像是我第一次写关于R画图的内容,原因呢当然是因为本人懒。现在既然有要做平台,那么就努力更新点干货给大家吧! 虽然是一门统计语言,它的画图能力也毫不逊色。“R以能创建漂亮优雅的图形而闻名。”这是《R语言实战》一书中对R语言的简短有力的一句评价。 那么在研究生涯中。对于简单的统计图,我们使用prism、excel等画出来的竟然比自己用R画出来的还要好看。不禁让我们产生了疑问,这到底是为什么呢? 于是乎,大家就开始在百度上搜啊搜,谷歌上搜啊搜,很难找到对上自己口味的图,找到了呢可能又没有代码实操。 此次就是给大家这样一次机会,自己动手,丰衣足食。图给你,代码也给你。当然啦,文章分享出去,有了影响力,以后会有更多的同学从其他地方搜到我们的内容,就更好不过了。 以TP53基因和肝癌的关系为例,下面开始主线内容:
领取专属 10元无门槛券
手把手带您无忧上云