数据库技术,泛指熟练使用SQL技术,不仅是各种关系型数据库的SQL,还有各种大数据平台的SQL,例如Hive-SQL、Spark-SQL等。 对于SQL技术这块,我们重点要掌握增删改查的四种操作,以及与编程语言的交互。 通过SQL技术,我们可以有效完成如下工作:
我之前预告过的 R 语言新书,起名为《R语言编程—基于tidyverse》,本书的目的是为了在国内推广 R 语言和 R 语言最新技术。本书非常适合新手 R 语言入门,老手 R 知识汰旧换新。
这里推荐几本线上的电子书,作者都在不断的更新,网页版的电子书,copy代码无障碍,无广告,很流畅。
前几天去新疆培训,制作了R语言的基础教程,在翻阅资料时,看到了知乎张敬信关于R学习的观点,很是赞同。
R是一种强大的数据分析和统计建模语言,但在处理大数据集和复杂计算任务时,使用并发编程技术可以显著提高代码的执行效率和响应能力。本文将介绍R编程中的并发基础知识,包括并发编程的概念、并发与并行的区别、共享资源与竞态条件以及同步与互斥等概念。同时,还将介绍R语言中支持并发编程的相关工具和包,并提供示例代码以帮助读者更好地理解并发编程在R中的应用。
从事大数据行业的人都清楚,R是用于统计分析、绘图的语言和操作环境,同时它还是一个用于统计计算和统计制图的优秀工具。特意整理出从入门到进阶的相关书籍,以供参考。
很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:199427210,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系
翻译 | AI科技大本营(rgznai100) 参与 | 波波 有个数据科学家常常调侃自己:既不如统计学家懂统计,又不如软件工程师懂软件…… 可他一旦出手,却总能手到擒来、毫不含糊,比如分析川普竞选期间使用Twitter的规律: (话说读完川普的1390条推文,你能看出点啥?) 数据科学家看出来的是,老川普在用安卓机(真土豪应该不用卖肾来买苹果),同时还不爱发图片(到底是老年人),较为和善的推文都是下属用iPhone发的(终究是担心被炒鱿鱼)。 因为在川普这1390条推文中,有762条来自安卓机
如果正确的利用模式识别进行商业预测和决策,那么会为企业带来巨大的利益。机器学习(ML)研究这些模式,并将人类决策过程编码成算法。这些算法可以被应用到几个实例以得出有意义的结论。在这篇文章中,我们将了解一些机器学习的基础、工作原理及特点。
大数据文摘作品,转载具体要求见文末 编译团队|Aileen 钱天培 JenniferZhu 作者|Julia Silge 前言 Stack Overflow的2017年程序员问卷调查[1]已在上周启动,我们(Stack Overflow的数据组)十分期待通过分析这次的调查结果来更好地了解我们的程序员群体。(译者注:Stack Overflow是一个IT技术问答网站,用户可在上面免费浏览、提交和回答问题。)我一直关注从事科技相关领域的女性群体,所以为了进一步地了解女程序员群体的现状,最近我特地去研究了去年(
Hi,大家好,我是小编庄闪闪。一年春为首,万事行为先。转眼间,二月份在忙碌的工作中已经过去了。
作者简介 李舰先生现任堡力山(PMI)集团副总,曾任Mango Solutions 中国区数据总监。 专注于数据科学在行业里的应用。擅长R语言的工程开发与分析建模,是 Rweibo、Rwordseg、tmcn 等 R 包的作者。 与肖凯合著了《数据科学中的R语言》,参与翻译了《R语言核心技术手册》、《机器学习与R语言》。 李舰先生也曾有多篇文章在统计之都主站上发表。 个人主页:http://jianl.org/ 引言: 这篇文章来自于我和肖凯的新作《数据科学中的R语言》的前言。原书受篇幅和语言风格所限
面向对象是一种对现实世界理解和抽象的方法,当代码复杂度增加难以维护的时候,面向对象就会显得非常重要。学过Java和Javascript两种语言的话,不难理解面向对象。
刚开始学习数据科学的人都会面对同一个问题: 不知道该先学习哪种编程语言。 不仅仅是编程语言,像Tableau,SPSS等软件系统也是同样的情况。有越来越多的工具和编程语言,很难知道该选择哪一种。 事实是,你的时间有限。学习一门新的编程语言相当于一项巨大的投资,因此在选择语言时需要有战略性。 很明显,一些语言会给你的投资带来很高的回报(付出的时间和金钱投资)。然而其他语言可能是你每年只用几次的纯粹辅助工具。 我给你的建议就是:先学习R语言 专注于一种语言 在说明为什么你应该学习R语言之前,我想强调的是,在开始
1. R的知识体系结构 R语言是一门统计语言,主要用于数学建模、统计计算、数据处理、可视化 等几个方向,R语言天生就不同于其他的编程语言。R语言封装了各种基础学科的计算函数,我们在R语言编程的过程中只需要调用这些计算函数,就可以构建出面向不同领域、不同业务的、复杂的数学模型。掌握R语言的语法,仅仅是学习R语言的第一步,要学好R语言,需要你要具备基础学科能力(初等数学,高等数学,线性代数,离散数学,概率论,统计学) + 业务知识(金融,生物,互联网) + IT技术(R语法,R包,数据库,算法) 的结合。所
R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。 R语言的优势 正如Tiobe、PyPL以及Redmonk等编程语言人气排名所指出,R语言所受到的关注程度正在快速提升。作为一款诞生于上世纪九十年代的语言,R已经成为S统计编程语言的一类实现方式。已经拥有十八年R编程经验的高校教授兼Coursera在线平台培训师Roger Peng指出,“R
摘要:Revolution Analytics已经提供了一个商业级R语言发行版Revolution R Enterprise,作为一个用于统计分析和基于数据图形渲染的开源编程语言,R语言人气甚高,已在金融、制药、新闻传媒和市场营销等行业获广泛使用。 【编者按】“收集数据只是第一步,分析数据才是关键”,R语言的发展满足了大数据时代统计编程的需求,然而开源环境下的R语言面临着诸多问题,商业支持或许会给R语言带来更好的发展,Revolution Analytics首先推出了AdviseR,CF
首先,在这里先跟大家说声对不起,技术团队最近一直在做课程开发,本着宁缺毋滥的原则,我们的微信文章一再搁置,在编辑部催了无数遍之后,终于可以把课程放出来给大家了。
如果说R语言学习者会有的书,大概率会有这一本。本书可以说是R语言学习者和使用者的一个分水岭,在此之前是各种copy调试,在此之后开始用R做一些自己的事情。其实这样的书可以罗列出好几本:
在数据科学(Data Science)领域,除了“什么是数据科学”这个问题以外,大家最感兴趣的问题就是“如何学习数据科学?”其实这个问题除了新手会问,有时候领域内的老手也有些迷惑。 数据科学家被誉为“2016年最佳工作”,甚至是“21世纪最性感的工作”,但学习起来真的并没有我们想象的那么轻松。 网络上可以找到大量关于学习数据科学的建议,但是如此大量的信息堆叠让可能还是让初学者感到无所适从。所以本文想要给出一个较为简单的学习方法:用八个步骤学习数据科学。本文的目的不在于为你提供一个详尽的学习清单,我们只是为每
首次接触R语言是在2012年读研的时候,有一门课程是统计分析与R语言,清晰地记得期末考试时,由于把答案给同学抄,最终落了个重考的后果(重考92分)。那个时候真的非常喜欢R语言,因为这种面向对象的语言很简单、很灵活,而且功能也非常强大(如果你接触过SAS,也许也会有这样的感想)。
对于那些对R语言还不熟悉的朋友,我先来做一个简单的介绍。首先,R是非常吸引人的一门语言。如今它已成为求职简历上让人眼前一亮的一门技能,部分原因是R语言的使用人数大大提升。如今它正被各种各样的专家们使用,包括软件开发、商业分析、统计报告和科学研究。你很有可能在工作中接触到R语言,你还可能会考虑学习和使用这门语言。 如果你需要证明,没有比一些反映R的增长的独立排名更好的了。R语言闯入近几年流行编程语言Tiobe指数的前20名;2015年, IEEE将R列在2015年十大编程语言的第6位。另外,随着数据密集型
编译|丁雪 校对丁一 对于那些对R语言还不熟悉的朋友,我先来做一个简单的介绍。首先,R是非常吸引人的一门语言。如今它已成为求职简历上让人眼前一亮的一门技能,部分原因是R语言的使用人数大大提升。如今它正
我买了很多R语言的书籍,很多时候我是想通过买书来鞭策自己多多学习,毕竟,实体的书籍花的是真金白银,沉默成本在哪里,不看就太可惜了。
今天给大家介绍一款在开源世界里集万千宠爱于一身的软件——R语言。 有多受宠呢?简单说,你能想到的地方都有它的身影。 做学术?看看R在各大语言排名系统的表现 O' reilly media在过去几年中
很多时候,当和人们讨论怎么开始学习数据科学,一个疑惑总是出现在我们面前: 我不知道应该学什么编程语言。 不仅仅是编程语言,这还包括软件系统,例如TABLEAU,SPSS等,这是个更加广阔范畴的工具和编程语言的集合,让人非常难清楚该如何选择。 我很明白。数年前,我刚开始把目光集中于数据科学的时候,我浏览了所有流行的编程语言:PYTHON,R,SAS,D3,并不包括那些虽然触手可及,但是实在是在数据分析方面没有优势的语言,例如perl,BASH和JAVA。即使在今天,我也只是从别处得到建议(从一个非常出名的数据
R语言很好,安装R包很烦心,正式由于这种烦心,让我非常淡定的给出我认为的解决方案,当然没有什么是重装系统或者是把电脑砸掉买新电脑不能解决的。如果不想砸电脑,看一下我的建议吧。
这几年生物信息学(Bioinformatics,下文简称生信)的迅猛发展席卷科研领域,越来越多的科研工作者认识到生物信息的重要性,部分实验室甚至开出高价招聘专职的生物信息分析人员。越来越多的研究生为了老板的需求或者自己的发展,也开始了解和尝试学习生物信息。为此,各种“鱼龙混杂“的培训班曾出不穷,但是,扪心自问,真正能够带你进入这个领域的恐怕少之又少。
我们对事物的看法各不相同,有时他人特别喜欢的语言可能会成为另一个人的的噩梦。而我个人的噩梦是用C语言进行日常的编程工作。
R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章,都是从统计的角度,介绍如何让R语言利用Hadoop处理大数据。今天决定反过来,从计算机
通过这段时间的看书学习和对编程的思考,结合自己的亲身的学习经历,今天想和大家聊一聊如何高效学习编程技术。
要实现高效的大数据机器学习,需要构建一个能同时支持机器学习算法设计和大规模数据处理的一体化大数据机器学习系统。研究设计高效、可扩展且易于使用的大数据机器学习系统面临诸多技术挑战。近年来,大数据浪潮的兴起,推动了大数据机器学习的迅猛发展,使大数据机器学习系统成为大数据领域的一个热点研究问题。介绍了国内外大数据机器学习系统的基本概念、基本研究问题、技术特征、系统分类以及典型系统;在此基础上,进一步介绍了本实验室研究设计的一个跨平台统一大数据机器学习系统——Octopus(大章鱼)。 关键词:大数据;机器学
很多时候,当和人们讨论怎么开始学习数据科学,一个疑惑总是出现在我们面前: 我不知道应该学什么编程语言。 不仅仅是编程语言,这还包括软件系统,例如TABLEAU,SPSS等,这是个更加广阔范畴的工具和编程语言的集合,让人非常难清楚该如何选择。 我很明白。数年前,我刚开始把目光集中于数据科学的时候,我浏览了所有流行的编程语言:Python,R,SAS,D3,并不包括那些虽然触手可及,但是实在是在数据分析方面没有优势的语言,例如perl,BASH和JAVA。即使在今天,我也只是从别处得到建议(从一个非常出名的数
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章
很多时候,当和人们讨论怎么开始学习数据科学,一个疑惑总是出现在我们面前: 我不知道应该学什么编程语言。 不仅仅是编程语言,这还包括软件系统,例如TABLEAU,SPSS等,这是个更加广阔范畴的工具和编程语言的集合,让人非常难清楚该如何选择。 我很明白。数年前,我刚开始把目光集中于数据科学的时候,我浏览了所有流行的编程语言:Python,R,SAS,D3,并不包括那些虽然触手可及,但是实在是在数据分析方面没有优势的语言,例如perl,BASH和JAVA。即使在今天,我也只是从别处得到建议(从一个非常出名的数据
今天给大家推荐一本R语言的书籍。R 语言在近10 年来已经发生了日新月异的变化,不仅在内容上更加丰富多彩,而且在计算效率上也有了大幅的提升。它被更加广泛地用于数据可视化、统计建模、机器学习等领域,而且还能实现网络爬虫、网络应用开发等功能,成为数据科学领域的全能型工具。R 语言在学术界的地位已经不容置疑,在大数据时代中它是保证研究可重复性的重要工具。随着功能的日益完善,R 语言已经进军工业界,并在金融、保险、医疗、生物和信息计量等不同的应用场景中大放异彩,潜力不可估量。
R作为开源的数据统计分析语言正潜移默化的在企业中扩大自己的影响力。特有的扩展插件可提供免费扩展,并且允许R语言引擎运行在Hadoop集群之上。 R语言是主要用于统计分析、绘图的语言和操作环境。R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发。(也因此称为R)现在由“R开发核心团队”负责开发。R是基于S语言的一个GNU项目,所以也可以当作S语言的一种实现,通常用 S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由
– 比较分析C++、Java、Python、R语言的面向对象特征,这些特征如何实现的?有什么相同点?
什么是R语言? R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacO
几十年来,研究人员和开发人员一直在争论,对于进行数据科学和数据分析,Python和R语言哪个才是更好的选择?近年来,数据科学在生物技术、金融和社交媒体等多个行业迅速发展。数据科学的重要性不仅得到了业内人士的认可,而且还得到了许多学术机构的认可,目前越来越多的学校都开始设立数据科学学位。
来源Jack Cook 编译 Mika 本文为 CDA 数据分析师原创作品,转载需授权 想从事数据科学领域的初学者总是很困惑:应该学习哪种编程语言?专业重要吗?需要掌握哪些工具和技能?在这篇文章中,你的这些问题都能得到解答。 几星期前,我发布了我的第二篇Kaggle Kernel( Kernel: Kaggle中用于探索概念、展示技术或分享解决方案的短脚本)。我对Kaggle最近发布的“机器学习和数据科学现状”调查很感兴趣,并认为我可以从中得出一些有趣的见解。我以为大多数写Kernel的人都已经是
R语言是用于统计分析,图形表示和报告的编程语言和软件环境。 R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发。
作为程序员,我们常常会遇到一些代码,它们就像一本古老而神秘的魔法书,藏着无穷的智慧和技巧。有些代码如同家传宝贝,代代相传;有些则像祖传秘方,只有少数人知晓。在这篇博客中,我将分享一些我所遇到的“祖传代码”,并探讨它们的历史与文化价值。
R语言可以比作独孤九剑, 函数都是写好的, 包也是写好的, 直接用就可以了, 功能强大. 就像独孤九剑, 学起来不需要任何基础, 学会之后很强大, 破刀式, 破剑式, 破枪式等等, 可以应对很多问题. 但是如果你想在此基础上更上一层楼, 就难于登天了, 因为你没有基础, 向上走一点, 真的是牵一发而动全身, 进入了编程能力的天花板.
R语言是统计领域广泛使用的诞生于1980年左右的[S语言]的一个分支。可以认为R是S语言的一种实现。而S语言是由AT&T贝尔实验室开发的一种用来进行数据探索、统计分析和作图的[解释型语言]。最初S语言的实现版本主要是S-PLUS。S-PLUS是一个[商业软件],它基于S语言,并由MathSoft公司的统计科学部进一步完善。后来新西兰奥克兰大学的Robert Gentleman和Ross Ihaka及其他志愿人员开发了一个R系统。由“R开发核心团队”负责开发。R可以看作贝尔实验室(AT&T BellLaboratories)的RickBecker,JohnChambers和AllanWilks开发的S语言的一种实现。当然,S语言也是S-Plus的基础。所以,两者在程序语法上可以说是几乎一样的,可能只是在函数方面有细微差别,程序十分容易地就能移植到一程序中,而很多一的程序只要稍加修改也能运用于R。
R:为什么选择我?而不是其他高级语言,比如Python,Java,C,C++....那么多编程语言?
想从事数据科学领域的初学者总是很困惑:应该学习哪种编程语言?专业重要吗?需要掌握哪些工具和技能?在这篇文章中,你的这些问题都能得到解答。 几星期前,我发布了我的第二篇Kaggle Kernel( Ke
R是一种用于分析数据的领域特定语言。为什么数据分析需要自己的领域特定语言(DSL) ? R语言擅长些什么,不擅长什么?开发人员该如何利用R语言的优势并减轻其弱点? 在GOTO Conference中,
领取专属 10元无门槛券
手把手带您无忧上云