梯度下降算法推导与实现 import matplotlib.pyplot as plt import numpy as np import pandas as pd #Some helper functions for plotting and drawing lines def plot_points(X, y): admitted = X[np.argwhere(y==1)] rejected = X[np.argwhere(y==0)] plt.scatter([s
在上一篇文章中,我们已经讲解了如何将强化学习(Reinforcement Learning)和语言模型(Language Model)做结合:
作者:台运鹏 (正在寻找internship...) 主页:https://yunpengtai.top
本教程使用 Resnet50 模型演示了如何使用torch.distributed.rpc API 实现分布式管道并行。这可以看作是单机模型并行最佳实践中讨论的多 GPU 管道并行的分布式对应。
每天给你送来NLP技术干货! ---- 排版:AI算法小喵 1. Take-Away 笔者使用 PyTorch 编写了不同加速库在 ImageNet 上的使用示例(单机多卡)。需要的同学可以当作 quickstart 将所需要的部分 copy 到自己的项目中(Github 请点击下面链接): nn.DataParallel[1] 简单方便的 nn.DataParallel torch.distributed[2] 使用 torch.distributed 加速并行训练 torch.multiprocessi
本文作者提出了一种用于目标检测和实例分割任务的Rank & Sort Los),能够简化原来模型训练的复杂性,并能使得模型达到更好的performance。
本文作者提出了一种用于目标检测和实例分割任务的Rank & Sort Loss(RSLoss),能够简化原来模型训练的复杂性,并能使得模型达到更好的performance。
系列培训目录 ➡️神经网络(Neural Networks)⬅️ 卷积神经网络(Convolutional Neural Networks) 循环神经网络(Recurrent Neural Netwo
Horovod 是 TensorFlow、Keras、PyTorch 和 Apache MXNet 的分布式深度学习训练框架。Horovod 的目标是使分布式深度学习快速且易于使用。
有模型就要定义损失函数(又叫目标函数),没有损失函数,模型就失去了优化的方向。大家往往接触的损失函数比较少,比如回归就是MSE,MAE,分类就是log loss,交叉熵。在各个模型中,目标函数往往都是不一样的,如下所示:
随着深度学习的多项进步,复杂的网络(例如大型transformer 网络,更广更深的Resnet等)已经发展起来,从而需要了更大的内存空间。经常,在训练这些网络时,深度学习从业人员需要使用多个GPU来有效地训练它们。在本文中,我将向您介绍如何使用PyTorch在GPU集群上设置分布式神经网络训练。
""" 案例:研究生学院录取数据,用梯度下降训练一个网络。 数据有三个输入特征:GRE 分数、GPA 分数和本科院校排名(从 1 到 4)。排名 1 代表最好,排名 4 代表最差。 """ # ----------分隔线------------- """ 数据解读说明: admit 0未录取 1 录取 gre分数 gpa绩点分数 rank 本科院校等级 #数据预处理 admit --目标标签 rank ---分类变量--》亚编码|one-hot独热编码,相当于去除量纲的影响 gre,gpa
Axolotl[1] 是一个旨在简化各种AI模型的微调过程的工具,支持多种配置和架构。
在大规模训练 AI 模型是一项具有挑战性的任务,需要大量的计算能力和资源。同时,处理这些非常大模型的训练也伴随着相当大的工程复杂性。PyTorch FSDP,在 PyTorch 1.11 中发布,使这变得更容易。
简单来说,如果数据集较小时推荐尽量使用Map式Dataset,数据量过大、数据量未知、训练内存无法满足时只能使用Iterable式构建Dataset。
第1篇是2016年的Deep&Wide,第2篇是2017年的Deep&Cross(DCN),第3篇是2020年的DCN-V2.
本文基于DeepSpeedExamples仓库中给出的Megatron相关例子探索一下训练GPT2模型的流程。主要包含3个部分,第一个部分是基于原始的Megatron如何训练GPT2模型,第二个部分是如何结合DeepSpeed的特性进行训练Megatron GPT2,由于篇幅原因这篇文章只写了第一部分,主要是非常细致的记录了跑起来Megatron GPT2训练流程碰到的一些问题和如何解决的。本文主要以 https://github.com/microsoft/DeepSpeedExamples/tree/bdf8e59aede8c8e0577e8d4d557298ca8515268f 这里的codebase展开写作。
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索、自然语言处理、数据挖掘等场景中具有重要的作用。其达到的效果是:给定一组文档,对任意查询请求给出反映文档相关性的文档排序。本文简单介绍一下 L2R 的基本算法及评价指标。 背景 随着互联网的快速发展,L2R 技术也越来越受到关注,这是机器学习常见的任务之一。信息检索时,给定一个查询目标,我们需要算出最符合要求的结果并返回,这里面涉及一些特征计算、匹配等算法,对于海量的数据,如果仅靠人工来干预其中的一些参
自从2012年的ILSVRC竞赛Alexnet赢得冠军以来,计算机视觉已经非常出色了。这是人们在开始研究这项快速发展的技术时经常会遇到的说法。这个博客是为了理解细粒度视觉分类(FGVC)这一具有挑战性的问题,下面的文章将对此进行详细描述。
在本教程中,我们想要强调一个新的torch.nn.functional函数,可以帮助实现 Transformer 架构。该函数被命名为torch.nn.functional.scaled_dot_product_attention。有关该函数的详细描述,请参阅PyTorch 文档。该函数已经被整合到torch.nn.MultiheadAttention和torch.nn.TransformerEncoderLayer中。
在本文[1]中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果。
在前文中,我们介绍了PipeDream的总体架构,Profile阶段,计算分区阶段和模型转换阶段,本文我们介绍运行时执行引擎,这是一个统一基础设施层。
subprocess.CalledProcessError: Command ‘[’/home/labpos/anaconda3/envs/idr/bin/python’, ‘-u’, ‘main_distribute.py’, ‘–local_rank=1’]’ returned non-zero exit status 1.
DataParallel 使用起来非常方便,我们只需要用 DataParallel 包装模型,再设置一些参数即可。需要定义的参数包括:参与训练的 GPU 有哪些,device_ids=gpus;用于汇总梯度的 GPU 是哪个,output_device=gpus[0] 。DataParallel 会自动帮我们将数据切分 load 到相应 GPU,将模型复制到相应 GPU,进行正向传播计算梯度并汇总:
在pytorch中的多GPU训练一般有2种DataParallel(DP)和DistributedDataParallel(DDP) ,DataParallel是最简单的的单机多卡实现,但是它使用多线程模型,并不能够在多机多卡的环境下使用,所以本文将介绍DistributedDataParallel,DDP 基于使用多进程而不是使用多线程的 DP,并且存在 GIL 争用问题,并且可以扩充到多机多卡的环境,所以他是分布式多GPU训练的首选。
GAN是一个非常巧妙并且非常有用的模型。当有大量关于 GAN 的论文时,但是你会发现这些论文通常很难理解,你可能会想要一些对初学者更友好的东西。所以本文的对非传统机器学习人员来说,是我能想到的最好的例子。
在XGBoost 1.0.0中,引入了对使用JSON保存/加载XGBoost模型和相关超参数的支持,旨在用一个可以轻松重用的开放格式取代旧的二进制内部格式。后来在XGBoost 1.6.0中,还添加了对通用二进制JSON的额外支持,作为更高效的模型IO的优化。它们具有相同的文档结构,但具有不同的表示形式,但都统称为JSON格式。本教程旨在分享一些关于XGBoost中使用的JSON序列化方法的基本见解。除非明确说明,以下各节假定正在使用2个输出格式之一,可以通过在保存/加载模型时提供带有.json(或二进制JSON的.ubj)文件扩展名的文件名来启用这两种格式:booster.save_model('model.json')。
最近刚开始用pytorch不久,陆陆续续踩了不少坑,记录一下,个人感觉应该都是一些很容易遇到的一些坑,也在此比较感谢帮我排坑的小伙伴,持续更新,也祝愿自己遇到的坑越来越少。
Distributed data parallel training in Pytorchyangkky.github.io
数据较多或者模型较大时,为提高机器学习模型训练效率,一般采用多GPU的分布式训练。
蒸馏可以提供student在one-shot label上学不到的soft label信息,这些里面包含了类别间信息,以及student小网络学不到而teacher网络可以学到的特征表示‘知识’,所以一般可以提高student网络的精度。
上一期推文中,我们使用了Numba和CuPy来运行蒙特卡罗模拟来确定亚式障碍期权的价格。
PyTorch Zero Redundancy Optimizer 是一类旨在解决数据并行训练和模型并行训练之间权衡问题的算法。Zero Redundacy Optimizer 的思想来源于微软的ZeRO,具体实现是基于 Fairscale 的OSS。
应用领域 首先来谈一谈大模型的·成就 大模型已经在许多应用领域取得了显著的成果,包括:
说到learning to rank,大家应该都比较熟悉,但是说到用XGB做learning to rank,很少有人实现过.举个例子,比方说赛马,我们可以基于马的个头,体重,历史战绩等信息,建立XGB模型,进行二分类,最后选择赢的概率最高的马.这样做并没有问题,但是考虑到马是否能跑赢,和对手紧密相关,不管我选的马能力如何,只要他能跑赢同场比赛其他马即可,这就是排序.
NVIDIA Megatron 是一个基于 PyTorch 的分布式训练框架,用来训练超大Transformer语言模型,其通过综合应用了数据并行,Tensor并行和Pipeline并行来复现 GPT3,值得我们深入分析其背后机理。
LTR(Learning to Rank)学习排序已经被广泛应用到文本挖掘、搜索推荐系统的很多领域,比如IR中排序返回的相似文档,推荐系统中的候选产品召回、用户排序等,机器翻译中排序候选翻译结果等等。
在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,接下来我们通过几篇文章来看看如何把这些模块应用到实践之中,顺便把PyTorch分布式逻辑整体梳理一下。本文介绍如何使用分布式 RPC 框架实现参数服务器。
动态图改进:PyTorch 2.0仍然支持动态图(eager mode),并在此基础上进行了改进。除了提高性能外,还加入了对Dynamic Shapes的支持,可以动态变更输入数据的形状,以及对Distributed的扩展支持。
解密prompt24. RLHF新方案之训练策略:SLIC-HF & DPO & RRHF & RSO
本文是 PyTorch 分布式系列的第五篇,以几篇官方文档的翻译为基础,加入了自己的一些思考,带领大家进入DistributedDataParallel,在后续会用5~6篇左右做深入分析。
具体来讲,本文首先介绍了分布式计算的基本概念,以及分布式计算如何用于深度学习。然后,列举了配置处理分布式应用的环境的标准需求(硬件和软件)。最后,为了提供亲身实践的经验,本文从理论角度和实现的角度演示了一个用于训练深度学习模型的分布式算法(同步随机梯度下降,synchronous SGD)。
本文主要罗列与知识蒸馏相关的一些算法与应用。但首先需要明确的是,教师网络或给定的预训练模型中包含哪些可迁移的知识?基于常见的深度学习任务,可迁移知识列举为:
今天我们推送一篇关于人脸识别的文献,目前被CVPR2020录为最佳人脸识别框架之一。这次“计算机视觉研究院”简洁给大家分析,后续我们会分享具体代码实现功能,有兴趣的同学请持续关注!
导语 | pytorch作为目前主流的深度学习训练框架之一,可以说是每个算法同学工作中的必备技能。此外,pytorch提供了极其方便的API用来进行分布式训练,由于最近做的工作涉及到一些分布式训练的细节,在使用中发现一些之前完全不会care的点,现记录于此,希望对有需求的同学有所帮助。 本文包含: pytorch分布式训练的工作原理介绍。 一些大家平时使用时可能不太注意的点,这些点并不会导致直观的bug或者训练中断,但可能会导致训练结果的偏差以及效率的降低。 同时结合某些场景,介绍更为细粒度(group)的
ChatGPT 掀起的大模型训练浪潮让不少同学都对训练大模型跃跃欲试,在找训练 baseline 的时候肯定发现大模型训练的 codebase 更倾向于用 DeepSpeed(MMEngine v0.8.0 也已经支持拉,一键切换,肥肠方便!) 、ColossalAI (MMEngine 下个版本也会支持!) 等大模型训练框架,而鲜有问津 PyTorch 原生的 FSDP (FullyShardedDataParallel)。这到底是为啥嘞?是 FSDP 不够节省显存?训练速度太慢?还是说不好用?请耐心看完这篇文章,相信一定会有所收获。
这一篇文章感觉是不错的,大概的流程是,对好的图像经过不同级别的失真操作,得到一系列的图像,然后把不同失真程度的图像对输入到siamese net中训练。是一个non-reference的框架。
在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,接下来我们通过几篇文章来看看如何把这些模块应用到实践之中,顺便把PyTorch分布式逻辑整体梳理一下。本文介绍如何把分布式自动微分和分布式优化器结合起来训练一个模型。
领取专属 10元无门槛券
手把手带您无忧上云