https://db-engines.com/en/system/HBase%3BRedis
最近在网上又看到有关于Hadoop适用性的讨论[1]。想想今年大数据技术开始由互联网巨头走向中小互联网和传统行业,估计不少人都在考虑各种“纷繁复杂”的大数据技术的适用性的问题。这儿我就结合我这几年在Hadoop等大数据方向的工作经验,与大家讨论一下Hadoop、Spark、HBase及Redis等几个主流大数据技术的使用场景(首先声明一点,本文中所指的Hadoop,是很“狭义”的Hadoop,即在HDFS上直接跑MapReduce的技术,下同)。 我这几年实际研究和使用过大数据(包含NoSQL)技术包括Ha
最近在网上又看到有关于Hadoop适用性的讨论[1]。想想今年大数据技术开始由互联网巨头走向中小互联网和传统行业,估计不少人都在考虑各种“纷繁复杂”的大数据技术的适用性的问题。这儿我就结合我这几年在Hadoop等大数据方向的工作经验,与大家讨论一下Hadoop、Spark、HBase及Redis等几个主流大数据技术的使用场景(首先声明一点,本文中所指的Hadoop,是很“狭义”的Hadoop,即在HDFS上直接跑MapReduce的技术,下同)。 我这几年实际研究和使用过大数据(包含NoSQL)技术包括
https://mp.weixin.qq.com/s/TdnZeG8rRYwTfopEyTxmpQ
本期有 HBase入门、HBase集群监控、Kudu vs HBase、Flush与Compaction、MySQL索引优化、Redis 分布式锁。 希望大家会喜欢!
本期有 Redis、Apache Kylin、CockroachDB、HBase、Kafka、MongoDB。 希望大家会喜欢!
本期有 HBase、HBase+ES、StreamSets、explain、Cassandra、Redis。 希望大家会喜欢!
在HBase中,表格的Rowkey按照字典排序,Region按照RowKey设置split point进行shard,通过这种方式实现的全局、分布式索引,成为了其成功的最大的砝码。图1显示了HBase
数据库对互联网开发的重要性就不必多说了。作为大数据和AI时代的互联网er,如果你还是只懂MySQL,那你可就火星大发了。下面给大家总结下每个互联网er都必须懂的几种数据库产品:
(1)Redis 分布式缓存,基于内存,强调缓存,支持数据持久化,支持事务操作,NoSQL 类型的Key/vale数据库,同时支持List、Set等更丰富的类型。 (2)hbase HBase是建立在HDFS之上,提供高可靠性的列存储,实时读写的数据库系统。它介于Nosql和关系型数据库之间,仅通过主键和主键的range来检索数据,仅支持单行事务。主要用来存储非结构化和半结构化的松散数据。
Hi,大家好!我是祝威廉,本来微博也想叫祝威廉的,可惜被人占了,于是改名叫·祝威廉二世。然后总感觉哪里不对。目前在乐视云数据部门里从事实时计算,数据平台、搜索和推荐等多个方向。曾从事基础框架,搜索研发四年,大数据平台架构、推荐三年多,个人时间现专注于集群自动化部署,服务管理,资源自动化调度等方向。
本期有 HBase入门教程、Spark On HBASE、HBase二级索引、SQL 与 NoSQL、高并发&高可用、MySQL索引、Redis。 希望大家会喜欢!
最近几个月一直在做基于storm的流式处理,索性整理下所有的知识点与技术知识。
根据用户特征,重新排序热度榜,之后根据两种推荐算法计算得到的产品相关度评分,为每个热度榜中的产品推荐几个关联的产品
Flink可以运行在所有类unix环境中,例如:Linux,Mac OS 和Windows,一般企业中使用Flink基于的都是Linux环境,后期我们进行Flink搭建和其他框架整合也是基于linux环境,使用的是Centos7.6版本,JDK使用JDK8版本(Hive版本不支持JDK11,所以这里选择JDK8),本小节主要针对Flink集群使用到的基础环境进行配置,不再从零搭建Centos系统,另外对后续整合使用到的技术框架也一并进行搭建,如果你目前已经有对应的基础环境,可以忽略本小节,Linux及各个搭建组件使用版本如下表所示。
在业务中,我需要给每个用户保存1w条浏览记录,之后每一次的返回值都要和历史记录做一个去重,即保证用户不会重复看到同一篇文章.
大数据的典型特征,包括数据量大、数据类型多、价值密度低等,而具备这样特征的数据,在进入到存储阶段时,就需要根据数据类型及场景,来匹配适当的数据存储解决方案。今天我们来讲讲Java大数据开发当中,必须掌握的四种数据库。
Apache HBase是一种NoSQL键/值存储系统,它在Hadoop分布式文件系统(HDFS)上运行。
“大数据” 三个字其实是个marketing语言,从技术角度看,包含范围很广,计算、存储、网络都涉及,知识点广、学习难度高。
官网的hue:https://gethue.com/quickstart-hue-in-docker/ 因为所做项目已经开发基本完毕到达测试阶段,最近需要测试人员进行专项测试,所以需要一些hbase,redis,kafka这些平台的web操作页面,hbase对应使用hue,redis使用phpRedisAdmin,docker官网:https://hub.docker.com/r/erikdubbelboer/phpredisadmin/,kafka是kafka-manager。 hue的配置难点主要是先sudo docker pull gethue/hue:latest 接下来进去要改/usr/share/hue/desktop/conf下的hue.ini配置文件,在hbase_clusters块中改掉响应配置,接下来在hbase中也改好相应配置,接下来使用docker commit 容器id tag名称上传到本地docker库,再传到harbor仓库上,接下来写好配置文件即可运行,运行之前还要在hbase的hbase-site.xml和hdfs的core_site.xml中添加相应配置,运行成功后如下:
在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求。在这种情况下,协处理器(Coprocessors)应运而生。它允许你将业务计算代码放入在 RegionServer 的协处理器中,将处理好的数据再返回给客户端,这可以极大地降低需要传输的数据量,从而获得性能上的提升。同时协处理器也允许用户扩展实现 HBase 目前所不具备的功能,如权限校验、二级索引、完整性约束等。
本期有 Redis、分布式、HBase、impala与hive、protobuf、Phoenix。 希望大家会喜欢!欢迎喜欢的同学打赏、转发支持社区!
上篇已经大概讲述大数据组件版本和集群矩阵配置说明,有不清楚的同学,可以阅读上一篇
接下来的几天,博主将开始更Redis系列的博客,希望大家多多支持~本篇博客作为Redis系列第一篇,为大家带来的是Redis介绍及环境安装。
学习和使用hadoop有一年了,这里主要分享一下对hadoop整体上的理解,分门别类的介绍一下相关组件,最后提供了建议的学习路线,希望对hadoop的初学者有参考作用。
SQL 是一门 ANSI 的标准计算机语言,用来访问和操作数据库系统。SQL 语句用于取回和更新数据库中的数据。
NoSQL数据库在整个数据库领域的江湖地位已经不言而喻。在大数据时代,虽然RDBMS很优秀,但是面对快速增长的数据规模和日渐复杂的数据模型,RDBMS渐渐力不从心,无法应对很多数据库处理任务,这时NoSQL凭借易扩展、大数据量和高性能以及灵活的数据模型成功的在数据库领域站稳了脚跟。
可以发现的是,它们的持久化机制都差不得太多。今天想来总结一下,一方面想来回顾一下这些组件,一方面给还没入门过这些中间件的同学总结一下持久化的”套路“,后面再去学习的时候就会轻松很多。
需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据——因为数据可能还没来。Flink是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”。
HBase集群一旦部署使用,再想对其作出调整需要付出惨痛代价,所以如何部署HBase集群是使用的第一个关键步骤。
随着客户上云的加快,客户越来越希望直接采用云上的数据库系统支撑业务发展,作为服务商来讲,了解云上的数据库的应用场景及常见特性成为必然。否则,将出现与客户交流困难,影响项目成效的麻烦事。今天我们讲五种常见的云数据库,这些内容也是在与客户沟通交流中的常见问题。
本文主要介绍HBase在滴滴内部的一些典型使用场景,如何设计整个业务数据流,让平台开发者与用户建立清晰、明确、良好的合作关系 背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、
推荐系统主要解决的是信息过载问题,目标是从海量物品筛选出不同用户各自喜欢的物品,从而为每个用户提供个性化的推荐。推荐系统往往架设在大规模的业务系统之上,不仅面临着用户的不断增长,物品的不断变化,而且有着全面的推荐评价指标和严格的性能要求(Netflix 的请求时间在 250 ms 以内,今日头条的请求时间在 200ms 以内),所以推荐系统很难一次性地快速计算出用户所喜好的物品,再者需要同时满足准确度、多样性等评价指标。
背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、安全和用户行为分析、模型训练等。 多语言支持 HBase提供了多语言解决方案,并且由于滴滴各业务线RD所使用的开发语言各有偏好
第一阶段:linux+搜索+hadoop体系Linux大纲这章是基础课程,帮大家进入大数据领域打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,kvm,openstack等众多课程。因为企业中无一例外的是使用Linux来搭建或部署项目。1) Linux的介绍,Linux的安装:VMware Workstation虚拟软件安装过程、CentOS虚拟机安装过程
NoSQL,泛指非关系型的数据库,随着互联网的发展传统的关系型数据库面对持续增长的数据处理起来显得越来越力不从心,此时非关系型数据库应运而生。
•MapReduce写入Hbase原理:封装了一个TableOutputFormat来实现写入Hbase的数据 •要求 –写入Hbase的数据的V的类型必须为Put类型
作者简介 大伟,携程软件技术专家,关注企业级监控、日志、可观测性领域。 一、 背景概述 框架Dashboard是一款携程内部历史悠久的自研监控产品,其定位是企业级Metrics监控场景,主要提供用户自定义Metrics接入,并基于此提供实时数据分析和视图展现的面板服务,提供可定制的基于时间序列的各类系统级性能数据和业务指标数据的看板。还可以提供灵活的数据收集接口、分布式的大容量存储和灵活的展现方式。 由于时间较早,那时候业界还没有像样的TSDB产品,类似Prometheus,InfluxDB都是后起之秀,
1、文件存储当然是选择Hadoop的分布式文件系统HDFS,当然因为硬件的告诉发展,已经出现了内存分布式系统Tachyon,不论是Hadoop的MapReduce,Spark的内存计算、hive的MapReuduce分布式查询等等都可以集成在上面,然后通过定时器再写入HDFS,以保证计算的效率,但是毕竟还没有完全成熟。
后面做的项目估计要使用到Hbase,因此做知识储备。个人学习路线为参考慕课网相关教学视频,然后翻看Hbase权威指南,并未做很深的原理剖析。 本次学习还有一些其他收获:
有粉丝给我留言说,希望我更新一期关于NoSQ的视频,那今天,咱们就来聊一聊我对NoSQL的理解。如果你也有想要我分享的面试题,请在评论区告诉我,后续安排。
介绍: 基于Flink实现的商品实时推荐系统。flink统计商品热度,放入redis缓存,分析日志信息,将画像标签和实时记录放入Hbase。在用户发起推荐请求后,根据用户画像重排序热度榜,并结合协同过滤和标签两个推荐模块为新生成的榜单的每一个产品添加关联产品,最后返回新的用户列表。 1. 系统架构 v2.0 1.1 系统架构 v2.0
在 db-engines 网站上,我们看到,数据库系统的主要市场虽然还是被 Oracle、Mysql、Ms SQL Server 三个关系型数据库所占据,但是 NoSql 的数据库也正在呈现上升态势。 虽然业内传闻的关于 DBA 将死的传言有些过于夸张,但是几个 NoSQL 数据库以其难以替代的优势抢占了很大的一部分市场。
数据库的七种武器,是我在工作维护和接触到的七种常用数据库,包括4种常用的关系型数据库,3种常用nosql数据库。
写在第8期特辑 “大数据” 三个字其实是个marketing语言,从技术角度看,包含范围很广,计算、存储、网络都涉及。为了满足众多同学学习和工作的需要,后面社区根据情况逐渐推出专门的分类集锦,希望大家喜欢! 特别提醒,文末有惊喜! 以下是专门NoSQL集合正文,限于众编辑水平有限,不保证大家都喜欢。 1 高性能Redis Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value类型的NoSQL数据库。 http://dwz.cn/78OTPp 2 Hbase的架构及设计 阐述了HBas
点击下一步,选择主版本和模块,这里以Spring2.x版本为例,引入JDBC和对接Redis及Kafka的Starter。
1 自从Hadoop生态圈流行开来以后,以Apache基金会为代表的开源社区空前强大,国内外互联网公司都纷纷使用开源软件。然而参与开源社区并非是一件容易的事情。需要投入人力物力尚在其次,更为主要的,是公司业务需求的发展,和开源社区的开发之间不可妥协的矛盾。 简单来说,开源社区的系统,对于日渐壮大的互联网公司,对于希望通过云计算服务提供给其他客户使用的云计算公司,都存在开源项目跟不上业务需求的困境。 比如说Hadoop发展比较早期的时候,Facebook内部最初是使用Hadoop原生系统的。但是慢慢的Ha
领取专属 10元无门槛券
手把手带您无忧上云