首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

sas从表中随机选择10个obs

SAS(Statistical Analysis System)是一种统计分析系统,它提供了广泛的数据处理、数据分析和数据可视化功能。在云计算领域中,SAS可以作为一种云原生的解决方案,提供强大的数据分析和处理能力。

从表中随机选择10个obs,其中"obs"是SAS中的一个术语,表示观测值(Observation)。在SAS中,数据通常以表格的形式组织,每一行代表一个观测值,每一列代表一个变量。要从表中随机选择10个obs,可以使用SAS的数据步骤(DATA step)和PROC SURVEYSELECT过程。

下面是一个示例代码,演示如何从表中随机选择10个obs:

代码语言:txt
复制
/* 创建示例数据集 */
data sample;
  input var1 var2 var3;
  datalines;
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
;

/* 从表中随机选择10个obs */
data random_sample;
  set sample;
  if ranuni(0) < 0.1;
run;

/* 打印结果 */
proc print data=random_sample;
run;

上述代码首先创建了一个名为"sample"的示例数据集,包含3个变量(var1、var2、var3)和10个观测值。然后使用DATA step和IF语句,在"random_sample"数据集中选择满足条件(ranuni(0) < 0.1)的观测值,即随机选择10%的观测值。最后使用PROC PRINT过程打印结果。

对于SAS的云计算解决方案,腾讯云提供了SAS云计算服务(SAS Cloud),它是基于腾讯云的弹性计算和存储资源构建的,可以提供高性能的数据分析和处理能力。您可以通过访问腾讯云的官方网站了解更多关于SAS云计算服务的详细信息和产品介绍。

腾讯云SAS云计算服务介绍链接:https://cloud.tencent.com/product/sas

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模

    随机波动率(SV)模型是常用于股票价格建模的一系列模型。在所有的SV模型中,波动率都被看作是一个随机的时间序列。然而,从基本原理和参数布局的角度来看,SV模型之间仍有很大的不同。因此,为一组给定的股票价格数据选择最合适的SV模型对于对股票市场的未来预测非常重要。为了实现这一目标,可以使用留一交叉验证(LOOCV)方法。然而,LOOCV方法的计算成本很高,因此它在实践中的应用非常有限。在对SV模型的研究中,我们提出了两种新的模型选择方法,即综合广泛适用信息准则(iWAIC)和综合重要性抽样信息准则(iIS-IC),作为近似LOOCV结果的替代品。在iWAIC和iIS-IC方法中,我们首先计算每个观测值的期望似然,作为相对于相应的潜变量(当前的对数波动参数)的积分。由于观测值与相应的潜变量高度相关,每个第 t 个观测值(y obs t)的综合似然值期望接近于以 y obs t 为保持数据的模型所计算的 y obs t 的期望似然值。其次,在计算信息标准时,综合期望似然被用作期望似然的替代。由于相对于潜变量的整合在很大程度上减少了模型对相应观测值的偏差,因此整合后的信息标准有望接近LOOCV结果。为了评估iWAIC和iIS-IC的性能,我们首先使用模拟数据集进行了实证研究。该研究结果表明,iIS-IC方法比传统的IS-IC有更好的性能,但iWAIC的性能并不优于非综合WAIC方法。随后,利用股票市场收益数据进行了进一步的实证研究。根据模型的选择结果,对于给定的数据,最好的模型是具有两个独立自回归过程的SV模型,或者是具有非零预期收益的SV模型。

    06

    用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模

    随机波动率(SV)模型是常用于股票价格建模的一系列模型。在所有的SV模型中,波动率都被看作是一个随机的时间序列。然而,从基本原理和参数布局的角度来看,SV模型之间仍有很大的不同。因此,为一组给定的股票价格数据选择最合适的SV模型对于对股票市场的未来预测非常重要。为了实现这一目标,可以使用留一交叉验证(LOOCV)方法。然而,LOOCV方法的计算成本很高,因此它在实践中的应用非常有限。在对SV模型的研究中,我们提出了两种新的模型选择方法,即综合广泛适用信息准则(iWAIC)和综合重要性抽样信息准则(iIS-IC),作为近似LOOCV结果的替代品。在iWAIC和iIS-IC方法中,我们首先计算每个观测值的期望似然,作为相对于相应的潜变量(当前的对数波动参数)的积分。由于观测值与相应的潜变量高度相关,每个第 t 个观测值(y obs t)的综合似然值期望接近于以 y obs t 为保持数据的模型所计算的 y obs t 的期望似然值。其次,在计算信息标准时,综合期望似然被用作期望似然的替代。由于相对于潜变量的整合在很大程度上减少了模型对相应观测值的偏差,因此整合后的信息标准有望接近LOOCV结果。为了评估iWAIC和iIS-IC的性能,我们首先使用模拟数据集进行了实证研究。该研究结果表明,iIS-IC方法比传统的IS-IC有更好的性能,但iWAIC的性能并不优于非综合WAIC方法。随后,利用股票市场收益数据进行了进一步的实证研究。根据模型的选择结果,对于给定的数据,最好的模型是具有两个独立自回归过程的SV模型,或者是具有非零预期收益的SV模型。

    02

    《Scikit-Learn与TensorFlow机器学习实用指南》 第16章 强化学习(上)

    强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和机器控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,在多数游戏中,比人类玩的还好,它仅使用像素作为输入而没有使用游戏规则的任何先验知识。这是一系列令人惊叹的壮举中的第一个,并在 2016 年 3 月以他们的系统阿尔法狗战胜了世界围棋冠军李世石而告终。从未有程序能勉强打败这个游戏的大师,更不用说世界冠军了。今天,RL 的整个领域正在沸腾着新的想法,其都具有广泛的应用范围。DeepMind 在 2014 被谷歌以超过 5 亿美元收购。

    03
    领券