首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV SIFT特征算法详解与使用

    SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大,很难实时,所以对一些实时要求比较高的常见SIFT算法还是无法适用。如今SIFT算法在深度学习特征提取与分类检测网络大行其道的背景下,已经越来越有鸡肋的感觉,但是它本身的算法知识还是很值得我们学习,对我们也有很多有益的启示,本质上SIFT算法是很多常见算法的组合与巧妙衔接,这个思路对我们自己处理问题可以带来很多有益的帮助。特别是SIFT特征涉及到尺度空间不变性与旋转不变性特征,是我们传统图像特征工程的两大利器,可以扩展与应用到很多图像特征提取的算法当中,比如SURF、HOG、HAAR、LBP等。夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT算法还是值得认真详细解读一番的。SIFT特征提取归纳起来SIFT特征提取主要有如下几步:

    03

    SIFT特征点提取「建议收藏」

    计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

    02

    实战角度!图片去水印及图片匹配替换几种方法分析

    最近手上有一批图片需要去水印,同时也要对于大图中某个小部分做替换。之前网站的很多图片水印的处理方式都比较简单粗暴,确定水印加在图片上的大致位置,然后做一个不透明度100%的图片覆盖上去,完美解决问题,但是不理想的地方也显而易见,用户观感特别不好。所以,借着这次处理的机会,想把问题根除掉。本文会分四部分,零部分(你没有看错!)主要是自己尝试的路径,如果想简单直接,不失为一种有效方式。第一部分把可以应用的计算机视觉领域可能会用到的算法或者对思路有拓展的算法进行总结,同时对于有些算法的使用过程中遇到的问题,结合我自己的实战经验给出一些实践避坑指南。第二部分,对应第一部分的总结,会给出通用的实现demo,第三部分,会对本文进行总结,相信你在图片匹配替换或者去水印领域遇到相关问题,我的文章都能给你些许思路。

    01

    图像特征点|SIFT特征点之图像金字塔

    计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

    04

    EEG有效连接工具包SIFT的介绍与安装

    功能连接(Functional connectivity, FC)可以说是EEG研究中的一个非常重要的方法。对于正常的大脑高级认知功能来说,往往并不仅仅是单独的某个脑区在起作用,而是更加依赖于不同脑区之间的相互协同工作,因此研究不同脑区的功能连接对我们理解大脑的大脑高级认知功能机制来说非常重要。 其实,有效连接(Effective connectivity, EC)属于功能连接中的一个重要的分支,所谓有效连接是指用某种方法来测量两种信号之间的因果依赖程度和关系,即不仅能够指出两个脑区的相关程度,而且还能够计算出两个脑区信息流向。因此,与无向的功能连接相比,可以提供更加丰富的信息。在EEG领域中,研究者提出了非常丰富的算法来测定两种信号之间的有效连接,如部分有向相干(Partial directed coherence, PDC)、有向传递函数(Direct transfer function, DTF)等,但是这些算法非常复杂,计算起来非常麻烦。这里,笔者就给各位介绍一款基于EEGlab的计算EEG有效连接的工具包,即The Source Information Flow Toolbox(即SIFT)。 注:该工具包我们会在线下的培训班中详细讲解其使用方法和注意事项,感兴趣的可以咨询联系。

    00

    KAZE特征的理解

    毕设要做图像配准,计划使用KAZE特征进行特征点的检测,以下是我对KAZE算法原理的理解,有什么不对的地方,希望提出来大家相互讨论学习。 一、KAZE算法的由来 KAZE算法是由法国学者在在2012年的ECCV会议中提出的,是一种比SIFT更稳定的特征检测算法。KAZE的取名是为了纪念尺度空间分析的开创者—日本学者Iijima。KAZE在日语中是‘风’的谐音,寓意是就像风的形成是空气在空间中非线性的流动过程一样,KAZE特征检测是在图像域中进行非线性扩散处理的过程。 KAZE算法的原英文文献《KAZE Features》的地址为:https://link.springer.com/chapter/10.1007/978-3-642-33783-3_16 二、KAZE算法的原理 SITF、SURF算法是通过线性尺度空间,在线性尺度空间来检测特征点的,容易造成边界模糊和细节丢失;而KAZE算法是通过构造非线性尺度空间,并在非线性尺度空间来检测特征点,保留了更多的图像细节。KAZE算法主要包括以下步骤: (1)非线性尺度空间的构建; (2)特征点的检测与精确定位; (3)特征点主方向的确定; (4)特征描述子的生成。 下面详细讲述每一步的具体过程。 1.非线性尺度空间的构建 KAZE算法作者通过非线性扩散滤波和加性算子分裂(AOS)算法来构造非线性尺度空间。在此有必要了解下非线性扩散滤波和AOS算法。 (1) 非线性扩散滤波 非线性扩散滤波方法是将图像亮度(L)在不同尺度上的变化视为某种形式的流动函数的散度,可以通过非线性偏微分方程来描述:

    02

    apap图像全景拼接

    图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。

    03
    领券