本文讲述了一位非计算机专业背景的人如何通过自学成为AI工程师的经历,包括学习准备、求职过程、面试经验等方面的总结。作者强调在求职过程中要保持耐心和毅力,同时多向他人请教和学习,对于遇到困难时要保持乐观态度。同时,作者建议对于简历的撰写要简洁明了,多注重实际操作经验,并推荐使用Kaggle等竞赛平台来提升自己的技能。最后,作者鼓励大家在求职过程中要有耐心和信心,多尝试,多学习,相信自己一定能够成功找到工作。
SIFT (尺度不变特征变换)和 SURF (加速稳健特征)是图像处理中常用的特征描述算法,用于提取图像中的关键点和生成对应的特征描述子。这些算法具有尺度不变性、旋转不变性和光照不变性等特点,适用于图像匹配、目标识别和三维重建等应用。本文将以 SIFT 和 SURF 特征描述为中心,为你介绍使用 OpenCV 进行特征提取的基本原理、步骤和实例。
SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大,很难实时,所以对一些实时要求比较高的常见SIFT算法还是无法适用。如今SIFT算法在深度学习特征提取与分类检测网络大行其道的背景下,已经越来越有鸡肋的感觉,但是它本身的算法知识还是很值得我们学习,对我们也有很多有益的启示,本质上SIFT算法是很多常见算法的组合与巧妙衔接,这个思路对我们自己处理问题可以带来很多有益的帮助。特别是SIFT特征涉及到尺度空间不变性与旋转不变性特征,是我们传统图像特征工程的两大利器,可以扩展与应用到很多图像特征提取的算法当中,比如SURF、HOG、HAAR、LBP等。夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT算法还是值得认真详细解读一番的。SIFT特征提取归纳起来SIFT特征提取主要有如下几步:
在2004年,不列颠哥伦比亚大学的D.Lowe的论文《尺度不变关键点中的独特图像特征》中提出了一种新的尺度不变特征变换(SIFT)算法,该算法提取关键点并计算其描述符。回顾一下SIFT算法的计算步骤,主要包括四个步骤。
Sift是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。在Mikolajczyk对包括Sift算子在内的十种局部描述子所做的不变性对比实验中,Sift及其扩展算法已被证实在同类描述子中具有最强的健壮性。
本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下
本篇开始,将进入图像配准领域的研究。 图像拼接主要有SIFT, BRISK, ORB, AKAZE等传统机器学习算法以及SuperPoint等深度学习算法,在后续将一一进行研究和实验。本篇主要来研究SIFT算法的原理和应用。
知乎上看到一个话题—— 目前火热的 Deep Learning 会灭绝传统的 SIFT / SURF 特征提取方法吗? ---- 由于之前研究过SIFT和HOG这两种传统的特征提取方法,故本篇文章先对SIFT和HOG作一综述,并比较二者优缺点。之后,将SIFT和HOG同神经网络特征提取做一对比,浅谈对上述问题的看法。如果能写得快一些,再简单介绍其他几种传统的特征提取的方法——SURF、ORB、LBP、HAAR等等。 ---- 目录 [1] SIFT(尺度不变特征变换) [2] HOG(方向梯度直方图)
传统图像分类算法的两种方法:SIFT特征+KNN分类器和HOG特征+SVM分类器。
图像识别、人脸识别可行的算法有很多。但是作为学习,如果能理清这个问题研究的历程及其主线,会对你深入理解当前研究最新的发展有很多帮助。本文是自己在学习过程中的笔记,大多内容来自于网络,出处请参考最后的引文部分。 Sift算法 Sift算法是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。总体来说,Sift算子具有以下特性: Sift特征是图像的局部特征,对平移
计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。
最近手上有一批图片需要去水印,同时也要对于大图中某个小部分做替换。之前网站的很多图片水印的处理方式都比较简单粗暴,确定水印加在图片上的大致位置,然后做一个不透明度100%的图片覆盖上去,完美解决问题,但是不理想的地方也显而易见,用户观感特别不好。所以,借着这次处理的机会,想把问题根除掉。本文会分四部分,零部分(你没有看错!)主要是自己尝试的路径,如果想简单直接,不失为一种有效方式。第一部分把可以应用的计算机视觉领域可能会用到的算法或者对思路有拓展的算法进行总结,同时对于有些算法的使用过程中遇到的问题,结合我自己的实战经验给出一些实践避坑指南。第二部分,对应第一部分的总结,会给出通用的实现demo,第三部分,会对本文进行总结,相信你在图片匹配替换或者去水印领域遇到相关问题,我的文章都能给你些许思路。
图像特征就是指有意义的图像区域,具有独特性或易于识别性,比如角点、斑点以及高密度区。
1.RANSAC算法介绍 RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、无法适应数学模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。同时RANSAC也假设,给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。
自动化测试使用过程中,发现很多App无法获取到控件、资源ID等内部资源,而目前主要的移动端自动化测试工具基本都是基于获取内部控件元素来进行操作。因此,传统的测试框架和工具无法满足项目组游戏自动化测试的需求。
导语 在客户端自动化中,如果需要对UI进行操作,控件识别和操作是最基础的能力。在windows标准控件中,我们可以通过FindWindow来找到窗口,FindWindowEx来找到子窗口和按钮,在selenium测试web页面,我们通过find_element_by_xpath、find_element_by_css_selector、find_element_by_id等等来找到页面元素。但是,在大多数应用程序中使用的都是非标准的控件,无法通过FindWindowEx来找到某个按钮,也无法通过某个ID来找
OpenCV 4.4.0 于2020年7月18日正式发布,不得不说OpenCV 作为最大开源的图像处理工具,提供的内容太全面了,对小白友好度很高。不仅算法众多,而且文档、源码、各平台下的SDK都极易获取/访问。
基于内容的图像检索任务(CBIR)长期以来一直是计算机视觉领域重要的研究课题,自20世纪90年代早期以来,研究人员先后设计了图像的全局特征,局部特征,卷积特征的方法对CBIR任务进行探索和研究,并取得了卓越的成果。
功能连接(Functional connectivity, FC)可以说是EEG研究中的一个非常重要的方法。对于正常的大脑高级认知功能来说,往往并不仅仅是单独的某个脑区在起作用,而是更加依赖于不同脑区之间的相互协同工作,因此研究不同脑区的功能连接对我们理解大脑的大脑高级认知功能机制来说非常重要。 其实,有效连接(Effective connectivity, EC)属于功能连接中的一个重要的分支,所谓有效连接是指用某种方法来测量两种信号之间的因果依赖程度和关系,即不仅能够指出两个脑区的相关程度,而且还能够计算出两个脑区信息流向。因此,与无向的功能连接相比,可以提供更加丰富的信息。在EEG领域中,研究者提出了非常丰富的算法来测定两种信号之间的有效连接,如部分有向相干(Partial directed coherence, PDC)、有向传递函数(Direct transfer function, DTF)等,但是这些算法非常复杂,计算起来非常麻烦。这里,笔者就给各位介绍一款基于EEGlab的计算EEG有效连接的工具包,即The Source Information Flow Toolbox(即SIFT)。 注:该工具包我们会在线下的培训班中详细讲解其使用方法和注意事项,感兴趣的可以咨询联系。
图像拼接是计算机视觉中最成功的应用之一。如今,很难找到不包含此功能的手机或图像处理API。在本文中,我们将讨论如何使用Python和OpenCV进行图像拼接。也就是,给定两张共享某些公共区域的图像,目标是“缝合”它们并创建一个全景图像场景。当然也可以是给定多张图像,但是总会转换成两张共享某些公共区域图像拼接的问题,因此本文以最简单的形式进行介绍。
如果你学习SIFI得目的是为了做检索,也许 OpenSSE 更适合你,欢迎使用。
Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。主要包含了三部分:Airtest IDE、Airtest(用截图写脚本)和 Poco(用界面UI元素来写脚本)。来自Google的评价:Airtest 是安卓游戏开发最强大、最全面的自动测试方案之一。 图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在git
我们探索了许多特征提取算子,如SIFT,SURF,BRISK和ORB。你可以使用这款Colab笔记本,甚至可以用你的照片试试。[这里我已经调试好源码并上传到github上面]
VLAD是vector of locally aggregated descriptors的简称,是由Jegou et al.在2010年提出,其核心思想是aggregated(积聚),主要应用于图像检索领域
opencv的features2d包中提供了surf,sift和orb等特征点算法,根据测试结果发现在opencv3.0的java版本中存在一些bug,导致surf算法无法使用,会抛出如下异常:
面试邀请: 在“拉钩”上投了简历,2h后HR打电话邀请第二天下午四点面试。 面试内容: 基本是根据简历上项目经历来问的。 ---- 图像水印算法:傅里叶定义式,如何实现的(matlab库函数),有没有快速计算方法(快速傅里叶变换),快速傅里叶变换的思想 图像检索:整个检索系统的结构,每张图取了多少个SIFT响应点,LSH算法原理,KD-TREE速度是否比LSH快(面试官好像不知道LSH,用的是KD-TREE),sift特征(如何提取,做差分运算的目的(相当于获得高频信号,也可以在频域实现),sift特征有哪
基于内容的图像检索任务(CBIR)长期以来一直是计算机视觉领域重要的研究课题,自20世纪90年代早期,研究人员先后采用了图像的全局特征,局部特征,卷积特征的方法对CBIR任务进行研究和探索,并取得了卓越的成果。
图像特征可以包括颜色特征、纹理特征、形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰。图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。
Surf算法的原理
视频流的每个单独帧将具有对应于红色、绿色和蓝色的三个通道。视频帧中的颜色信息不会增强特征检测。此外,与单通道 8 位图像相比,3 通道 8 位图像的计算需要更多时间。因此,RGB 视频帧被转换为 8 位灰度图像。生成的灰度图像噪声更小,阴影细节更多,计算效率更高,如下图所示。
在计算机视觉中,图像特征是指从图像中提取出的一些有意义的信息,如边缘、角点、颜色等。通过对图像特征的提取,可以将图像转换为可处理的数字形式,从而使计算机能够理解和处理图像。
本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下
本文介绍了图像相似度检测技术的背景、原理、实现方法和关键点。首先介绍了图像相似度检测的意义,然后阐述了基于分块、特征提取、哈希、深度学习的方法,以及实现过程中需要注意的关键点。最后,总结了当前图像处理领域的发展趋势,包括特征提取、哈希、深度学习等方面的应用,并提出了改进点。
经典的特征匹配算法有SIFT、SURF、ORB等,这三种方法在OpenCV里面都已实现。SURF基本就是SIFT的全面升级版,有 SURF基本就不用考虑SIFT,而ORB的强点在于计算时间,以下具体比较:
图像匹配在图像检索和三维重建中应用很多,每年都会有大量的论文声称达到了SOTA(state-of-the-art,最先进的),但谷歌最新的一篇论文(Image Matching across Wide Baselines: From Paper to Practice)却指出,这很可能是验证数据不足的假象!
毕设要做图像配准,计划使用KAZE特征进行特征点的检测,以下是我对KAZE算法原理的理解,有什么不对的地方,希望提出来大家相互讨论学习。 一、KAZE算法的由来 KAZE算法是由法国学者在在2012年的ECCV会议中提出的,是一种比SIFT更稳定的特征检测算法。KAZE的取名是为了纪念尺度空间分析的开创者—日本学者Iijima。KAZE在日语中是‘风’的谐音,寓意是就像风的形成是空气在空间中非线性的流动过程一样,KAZE特征检测是在图像域中进行非线性扩散处理的过程。 KAZE算法的原英文文献《KAZE Features》的地址为:https://link.springer.com/chapter/10.1007/978-3-642-33783-3_16 二、KAZE算法的原理 SITF、SURF算法是通过线性尺度空间,在线性尺度空间来检测特征点的,容易造成边界模糊和细节丢失;而KAZE算法是通过构造非线性尺度空间,并在非线性尺度空间来检测特征点,保留了更多的图像细节。KAZE算法主要包括以下步骤: (1)非线性尺度空间的构建; (2)特征点的检测与精确定位; (3)特征点主方向的确定; (4)特征描述子的生成。 下面详细讲述每一步的具体过程。 1.非线性尺度空间的构建 KAZE算法作者通过非线性扩散滤波和加性算子分裂(AOS)算法来构造非线性尺度空间。在此有必要了解下非线性扩散滤波和AOS算法。 (1) 非线性扩散滤波 非线性扩散滤波方法是将图像亮度(L)在不同尺度上的变化视为某种形式的流动函数的散度,可以通过非线性偏微分方程来描述:
在本文中,我将讨论使用 OpenCV 进行图像特征检测、描述和特征匹配的各种算法。
目标检测是计算机视觉中的一个重要问题,近年来传统检测方法已难以满足人们对目标检测效果的要求,随着深度学习在图像分类任务上取得巨大进展,基于深度学习的目标检测算法逐渐成为主流。 总体上站长我都做了summary,先上图为敬:
直接比较图像内容的 md5 值肯定是不行的,md5 的方式只能判断像素级别完全一致。图像的基本单元是像素,如果两张图像完全相同,那么图像内容的 md5 值一定相同,然而一旦小部分像素发生变化,比如经过缩放、水印、噪声等处理,那么它们的 md5 值就会天差地别。
由于巨大的利益,论文造假屡见不鲜,在部分国家或地区甚至形成了论文造假的产业链。目前大部分论文查重系统只能检查论文文字,不能检查图片。因此,论文图片查重已然成为了学术论文原创性检测的重要部分。
本文是《SIFT Meets CNN: A Decade Survey of Instance Retrieval》的下篇。在上 篇中概述了图像检索任务极其发展历程,介绍了图像检索系统的基本架构和设计难点,详细展示了基于图像局部特征(以SIFT为代表)的检索流程以及关键环节的核心算法。
stevenmiao(苗捷),2016年7月博士毕业于华南理工大学,应届毕业加入TEG信息安全部。八年计算机视觉算法经验,博士期间主要研究面向视频的特征提取和内容识别算法。入职以来主要负责部门内基于大规模图像和视频检索、匹配的恶意内容过滤算法。 一、引言 图片相似性匹配,即对比两张图片的相似程度,可以用于图片搜索、聚类、版权保护、恶意图片过滤等应用。本文主要介绍用于图片相似性匹配的特征各类特征提取方法。对于图片的相似性匹配,可根据匹配的形式分为四个层次,分别概括如下: 1.像素级别相似:两张图片每个对应
本文详细论述了四个特征点检测算法:Harris, SIFT,SURF以及ORB的思路步骤以及特点,分析了它们的局限性,并对几个重要问题进行了探讨。
ORB>ORB(1000)>BRISK>BRISK(1000)>SURF(64D) >SURF(128D)>AKAZE>SIFT>KAZE
一. SIFT简介 1.1 算法提出的背景: 成像匹配的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相对应。传统的匹配算法往往是直接提取角点或边缘,对环境的适应能力较差,急需提出一种鲁棒性强、能够适应不同光照、不同位姿等情况下能够有效识别目标的方法。1999年British Columbia大学大卫.劳伊( David G.Lowe)教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SI
图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。
如何将一件物品的图像导入 Photoshop?首先你要拍摄照片,然后将这张照片通过网络或者存储卡传输到电脑上,再导入 Photoshop 界面。所以,这些流程能不能一步到位?
这也是特征工程系列最后一篇文章,介绍特征提取、特征选择、特征构建三个工作,通常特征工程被认为分为这三方面的内容,只是我将前面的数据&特征预处理部分都加入到这个系列。
领取专属 10元无门槛券
手把手带您无忧上云