1. D3 Stars: 46561, Forks: 12465 D3 是一个JavaScript数据可视化库用于HTML和SVG。它旨在将数据带入生活,强调Web标准,将强大的可视化技术与数据驱动的
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
I love Python, and to celebrate Packt Python week, I’ve spent some time developing an app using some of my favorite tools. The app is a graph visualization of Python and related topics, as well as showing where all our content fits in. The topics are all StackOverflow tags, related by their co-occurrence in questions on the site.
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
a-frame 是基于 threejs 的 web AR 库,也可以当 threejs 的简化版本使用,a-frame 只需写 html 标签就可以实现3维空间的操作,非常适合快速新手上手。下面介绍几个本文使用到的知识点。
2022年,8月3日,软件工程师 Stephen Lacy 在社交媒体上发布消息称,Github 正在遭受大规模恶意软件攻击,超 3.5 万个代码库受影响,波及范围涵盖 Crypto、Golang、Pyhon、js、bash、Docker 和 k8s 等领域。 该恶意软件被发现添加到 npm 脚本、Docker 图像和安装文档中。Stephen Lacy 提醒,此攻击可能会将被攻击者的多种密钥泄露给攻击者,并建议用户使用 GPG 签署所有提交。 但是事实与此相反,GitHub 上的“35000 个项目”并
在写AI/机器学习相关的论文或者博客的时候经常需要用到LaTex的公式,然而作为资深“伸手党”的我在网上搜索的时候,居然没有找到相关现成资源@-@
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
地铁音 http://www.mta.me/ 割绳子 http://www.cuttherope.ie/ 八卦图 Canvas Pinball http://ie.microsoft.com/testdrive/Graphics/CanvasPinball/Default.html 分享一个超酷的开源html5 canvas互动网络图形效果javascript类库 - sigma.js 图标类:仪表盘 Bubble Chart 类库: 一个可视化编程的脚本库envision.js sigm
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
github pages 一直想添加代码高亮 highlighter ,基于 jekyll 3.0 的 rouge 终于搞定了:
知识图谱(关系网络)可以用简单的形状和线条显示复杂的系统,帮助我们理解数据之间的联系。我们今天将介绍15个很好用的免费工具,可以帮助我们绘制网络图。
编译|核子可乐、燕珊 当地时间 7 月 18 日,谷歌 Go 语言项目负责人 Steve Francia 宣布辞去职务。Steve Francia 在圈内名气很高,他既曾是知名开源项目 Docker 和 MongoDB 的核心负责人,另外还是 spf13-vim、Hugo、Cobra、Viper 等开源项目的作者。 Steve Francia 在 2016 年 9 月宣布加入 Go 团队,至今已有 6 年,这次决定离职是因为感到自己在 Go 项目上“停滞不前”,已经很久没有学习,所以接下来他要把精力放在数
机器学习是什么?我认为其实就是统计学的另一种花里胡哨/故弄玄虚的说法!tensorflow.js是一个机器学习的框架:
什么是数据可视化?数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集
大数据文摘作品 作者:Peter Gleeson 编译:周佳玉、丁慧、叶一、小鱼、钱天培 今天文摘菌要教大家制作一张编程语言的关系网络图。如果不知道什么是关系网络图,可以点击下方链接先来看一下最终成果: http://programming-languages.herokuapp.com/#, 我们可以在这里看到从过去到现在的250多种编程语言之间的“设计影响”的关系,下面是该演示的截图: 接下来,就让我们一起来学做这个关系网络图吧! 在当今的超连接世界,网络在现代生活中无处不在。举个栗子,文摘菌的周末这
第14章 利用SVD简化数据 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
sigma.shape (460,) sum(sigma) 157867.72703660247 ==k===: 1 sigma.shape (460,) sum(sigma) 187252.6105270152 ==k===: 1 sigma.shape (460,) sum(sigma) 212052.90981610806 ==k===: 1 sigma.shape (460,) sum(sigma) 157867.72703660247 ==k===: 1 sigma.shape (460,) sum(sigma) 187252.6105270152 ==k===: 2 sigma.shape (460,) sum(sigma) 212052.90981610806 ==k===: 1 sigma.shape (460,) sum(sigma) 157867.72703660247 ==k===: 9 sigma.shape (460,) sum(sigma) 187252.6105270152 ==k===: 9 sigma.shape (460,) sum(sigma) 212052.90981610806 ==k===: 4 sigma.shape (460,) sum(sigma) 157867.72703660247 ==k===: 33 sigma.shape (460,) sum(sigma) 187252.6105270152 ==k===: 29 sigma.shape (460,) sum(sigma) 212052.90981610806 ==k===: 20 sigma.shape (460,) sum(sigma) 157867.72703660247 ==k===: 108 sigma.shape (460,) sum(sigma) 187252.6105270152 ==k===: 96 sigma.shape (460,) sum(sigma) 212052.90981610806 ==k===: 87
\[ \left[ \begin{array}{ccc} \sigma_{x} &\tau_{xy} &\tau_{xz}\\ \tau_{yx} &\sigma_{y} &\tau_{yz}\\ \tau_{zx} &\tau_{zy} &\sigma_{z} \end{array} \right] = \left[ \begin{array}{ccc} 0 &1 &2\\ 1 & \sigma_{y} & 1\\ 2 &1 &0 \end{array} \right] \] 并已知经过该点的某一平面上的应力矢量为零矢量,求 \(\sigma_y\) 和主应力?
《STA | 哐!一文打尽 SOCV / POCV》这个标题很打脸,因为没有transition variation 部分也没有moment 部分。最近在驴群讨论了Transition variation 部分,总结一下,感谢各位的无私输出。
相关原理见:https://zhuanlan.zhihu.com/p/39424587
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
【运筹学】线性规划 单纯形法 ( 案例解析 | 标准形转化 | 查找初始基可行解 | 最优解判定 | 查找入基变量与出基变量 | 迭代一 : 列出单纯形表) 后续博客 , 在上一篇博客中进行了 初始基可行解的检验数计算 , 最优解判定 , 入基变量与出基变量计算 , 并开始第一次迭代 ; 本篇博客中进行后续步骤解析 ;
【运筹学】线性规划数学模型 ( 单纯形法 | 第二次迭代 | 方程组同解变换 | 生成新单纯形表 | 计算检验数 | 最优解判定 | 线性规划解个数分析 ) 后续博客 , 在上一篇博客中进行了 第二次迭代 , 使用中心元变换得到新的系数矩阵 , 计算检验数 , 验证最优解 , 计算入基变量 , 出基变量 , 本篇博客开始进行第三次迭代 ;
\[ \sigma_{11}=3,\quad\sigma_{12} = \sigma_{13} = 1, \quad \sigma_{22} = \sigma_{33} = 0, \quad\sigma_{23} = 2 \] 求
但在实践中,通常会使用所谓的隐含波动率( implied volatility),该波动率是指通过期权的市场价格、运用B-S模型计算得到的波动率。但比较棘手的问题是,无法直接通过反解看涨期权定价式子或看跌期权定价式子将σ表示为变量c(或p)、S、K、r、T的函数,只能运用迭代方法求解出隐含的σ值。常用的迭代方法包括牛顿迭代法和二分查找法。
从上述代码的大致分析中可以知道,OpenCV的GaussianBlur本质上依然是filter2D,只是针对一些特殊情况进行了GPU和CPU版本的优化,如果输入的维度等信息不满足这些特殊情况,则选择使用filter2D进行计算.关于优化不是本文的重点,filter2D会在后续的博文中进行详细分析,所以这里只对获取GaussianKernel的部分进行介绍.
本文主要针对序列推荐中的多行为序列推荐,即行为序列中包含不同的行为类型,比如点击,加购,购买等。为了捕获用户的个性化行为模式和行为间的复杂协作关系,作者提出PBAT方法:
关于时序报告的解析,可回顾《论STA | 读懂timing report, 很重要》,SOCV 之前的时序报告都一样,delay 值可以相加得到,带SOCV 的时序报告会多出很多列,用以表述不同类型的mean 跟sigma 值。
exact_solution.m function ye = exact_solution(t,x,c) % Function called: profile yyy = x; for j = 1:length(x), yyy(j) = profile(x(j) - c*t); end ye = yyy; kappa_scheme.m kappa = 0; % Parameter of kappa-scheme c = 1; % Velocity sigma = 0.7;
GPUImageKuwaharaFilter GPUImage 图像桑原滤波/水粉画模糊效果,shader 源码如下:
Am×n=UΣVTUUT=ImVVT=InΣ=diag(σ1,σ2,...,σp)σ1≥σ2≥...≥σp≥0p=min(m,n)A_{m \times n} = U \Sigma V^T\\ UU^T=I_m\\ VV^T=I_n\\ \Sigma=diag(\sigma_1,\sigma_2,...,\sigma_p) \\ \sigma_1\ge \sigma_2 \ge...\ge\sigma_p \ge0\\ p=\min(m,n)Am×n=UΣVTUUT=ImVVT=InΣ=diag(σ1,σ2,...,σp)σ1≥σ2≥...≥σp≥0p=min(m,n)
上一篇博客 【运筹学】线性规划 人工变量法 ( 人工变量法案例 | 第一次迭代 | 中心元变换 | 检验数计算 | 选择入基变量 | 选择出基变量 ) 中 , 进行了第一次迭代 , 首先进行中心元变换 , 计算该单纯形表检验数 , 进行最优解判定 , 该初始基可行解不是最优解 , 先选择入基变量 , 然后根据入基变量选择出基变量 ; 本篇博客中开始进行第二次迭代计算 ;
数字图片在计算机中是以矩阵形式存储的。所以可以通过矩阵理论和矩阵算法对数字图像进行分析和处理。本文通过对图片进行SVD压缩,对不同的参数下的压缩效果进行对比。
昨天发了《论STA | POCV/ SOCV 时序报告解析》后,有好学的朋友提到如下两点没有解释清楚:
SIFT成名已久,但理解起来还是很难的,一在原作者Lowe的论文对细节提到的非常少,二在虽然网上有许多相应博文,但这些博文云里雾里,非常头疼,在查看了许多资料了,下面贴出我自己的一些理解,希望有所帮助。
❖ Excel:Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
本文和下面这篇文章有类似之处,都是考虑不确定性,指同一作者缩写,感兴趣的小伙伴可以阅读
考虑一市场变量,如股票,我们有其从第0天至第 N N N天每天末的数据 S 0 , S 1 , . . . , S N S_0, S_1, …, S_N S0,S1,...,SN。定义 σ n \sigma_n σn 为于第 n − 1 n-1 n−1天末所估计的市场变量在第 n n n天的波动率, σ n 2 \sigma_n^2 σn2为方差率。定义连续复利收益率 u n = ln S n S n − 1 ≈ S n − S n − 1 S n u_n =\ln{\frac{S_n}{S_{n-1}}}\approx \frac{S_n-S_{n-1}}{S_n} un=lnSn−1Sn≈SnSn−Sn−1。 则在指数加权移动平均模型 Exponentially Weighted Moving Average (EWMA) 模型下, σ n 2 \sigma_n^2 σn2的变化过程为: σ n 2 = λ σ n − 1 2 + ( 1 − λ ) u n − 1 2 , 0 < λ < 1 . \sigma_n^2 = \lambda \sigma_{n-1}^2+(1-\lambda)u_{n-1}^2, \;\; \; 0 < \lambda < 1\;. σn2=λσn−12+(1−λ)un−12,0<λ<1. σ n 2 \sigma_n^2 σn2也可以直接由 u i 2 u_i^2 ui2表示为: σ n 2 = ( 1 − λ ) ∑ i = 1 m λ i − 1 u n − i 2 + λ m σ n − m 2 , 1 < m < n . \sigma_n^2 = (1-\lambda)\sum_{i=1}^m\lambda^{i-1}u_{n-i}^2+\lambda^m\sigma_{n-m}^2, \;\;\;1<m<n\; . σn2=(1−λ)i=1∑mλi−1un−i2+λmσn−m2,1<m<n. 相对于 σ n 2 \sigma_n^2 σn2的简单估计 σ n 2 = 1 m ∑ i = 1 m u n − i 2 \sigma_n^2 = \frac{1}{m}\sum_{i=1}^mu_{n-i}^2 σn2=m1∑i=1mun−i2,EWMA模型下, σ n 2 \sigma_n^2 σn2中每个 u i 2 u_i^2 ui2的权重随时间距离的增加而指数衰减。这里的 m m m都为一选定的截断距离。 所以给定 S 0 , S 1 , . . . , S N S_0, S_1, …, S_N S0,S1,...,SN,我们可以先由 u n = S n − S n − 1 S n u_n=\frac{S_n-S_{n-1}}{S_n} un=SnSn−Sn−1计算出 u 1 , u 2 , . . . , u N u_1, u_2, …, u_N u1,u2,...,uN,然后设初始日方差率 σ 2 2 = u 1 2 \sigma_2^2 = u_1^2 σ22=u12,由 σ n 2 = λ σ i − 1 2 + ( 1 − λ ) u i − 1 2 \sigma_n^2 = \lambda \sigma_{i-1}^2 +(1-\lambda)u_{i-1}^2 σn2=λσi−12+(1−λ)ui−12,计算出 σ 2 2 , σ 3 2 , . . . , σ N + 1 2 \sigma_2^2, \sigma_3^2, …, \sigma_{N+1}^2 σ22,σ32,...,σN+12。即为EWMA模型给出的每天方差率/波动率的估计结果。
要拟合两个高斯分布并可视化它们的密度函数,您可以使用Python中的scipy.stats模块来拟合分布,并使用matplotlib来绘制密度函数。下面我将演示了如何拟合两个高斯分布并绘制它们的密度函数:
上一篇博客 【运筹学】线性规划 人工变量法 ( 单纯形法总结 | 人工变量法引入 | 人工变量法原理分析 | 人工变量法案例 ) 中 , 介绍了人工变量法 , 主要用于解决线性规划标准形式中 , 初始系数矩阵中没有单位阵的情况 , 并给出一个案例 , 本篇博客中继续使用人工变量法解解上述线性规划问题 ;
具有稀疏输入视图的新视角合成方法对于AR/VR和自动驾驶等实际应用非常重要。大量该领域的工作已经将深度信息集成到用于稀疏输入合成的NeRF中,利用深度先验协助几何和空间理解。然而,大多数现有的工作往往忽略了深度图的不准确性,或者只进行了粗糙处理,限制了合成效果。此外,现有的深度感知NeRF很少使用深度信息来创建更快的NeRF,总体时间效率较低。为了应对上述问题,引入了一种针对稀疏输入视图量身定制的深度引导鲁棒快速点云融合NeRF。这是点云融合与NeRF体积渲染的首次集成。具体来说,受TensoRF的启发,将辐射场视为一个的特征体素网格,由一系列向量和矩阵来描述,这些向量和矩阵沿着各自的坐标轴分别表示场景外观和几何结构。特征网格可以自然地被视为4D张量,其中其三个模式对应于网格的XYZ轴,第四个模式表示特征通道维度。利用稀疏输入RGB-D图像和相机参数,我们将每个输入视图的2D像素映射到3D空间,以生成每个视图的点云。随后,将深度值转换为密度,并利用两组不同的矩阵和向量将深度和颜色信息编码到体素网格中。可以从特征中解码体积密度和视图相关颜色,从而促进体积辐射场渲染。聚合来自每个输入视图的点云,以组合整个场景的融合点云。每个体素通过参考这个融合的点云来确定其在场景中的密度和外观。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives
上一篇博客 【运筹学】线性规划 人工变量法 ( 人工变量法案例 | 初始单纯形表 | 检验数计算 | 入基变量 | 出基变量 ) 中 , 使用了人工变量法解没有单位阵的线性规划问题 , 通过添加人工变量 , 构造了单位阵 , 生成初始单纯形表 , 计算该单纯形表检验数 , 进行最优解判定 , 该初始基可行解不是最优解 , 先选择入基变量 , 然后根据入基变量选择出基变量 ; 本篇博客中开始进行第一次迭代计算 ;
领取专属 10元无门槛券
手把手带您无忧上云