参与:黄小天、Smith 谷歌前不久在 arXiv 上发表论文《Attention Is All You Need》,提出一种完全基于 attention 的翻译架构 Transformer,实现了机器翻译的新突破...;近日,Github 上的一个项目给出了 Transformer 模型的 TensorFlow 实现,在官方代码公布之前共享了自己的代码。...项目链接:https://github.com/Kyubyong/transformer 需求 NumPy >= 1.11.1 TensorFlow >= 1.2(1.1 很可能也可以,但是我没有测试它...该论文的作者声称其模型,即 Transformer,在机器翻译方面的表现优于当前任何的模型;它仅使用 attention,而没有 CNN 和 RNN,这酷极了。
【新智元导读】谷歌今天公布了一个用 TensorFlow 构建神经机器翻译(NMT)系统的教程,全面解释 seq2seq 模型,并演示如何从零开始构建 NMT 翻译模型。...谷歌今天公布了一个用 TensorFlow 构建神经机器翻译(NMT)系统的教程,全面解释 seq2seq 模型,并演示如何从零开始构建 NMT 翻译模型。...基础 神经机器翻译的背景知识 回到过去,传统的基于短语的翻译系统是通过将源语言的句子分解成多个部分,然后逐个短语地进行翻译。这导致机器翻译的结果与人类翻译的结果很不同。...安装教程 要安装本教程,你需要在系统上安装TensorFlow。本教程要求最新版本的TensorFlow(version 1.2.1)。...要安装TensorFlow,请按照官方的安装说明进行操作(https://www.tensorflow.org/install)。
GitHub 链接:https://github.com/tensorflow/nmt 机器翻译,即跨语言间的自动翻译,是机器学习社区最活跃的研究领域。...今天,我们很高兴能够发布最新的 TensorFlow 神经机器翻译教程,帮助读者全面了解 seq2seq 模型,并介绍如何从头开始构建有竞争力的翻译模型。...然后我们会讨论构建更好神经机器翻译模型(翻译速度和质量)可能的技巧,例如 TensorFlow 最好的实践方法(batching, bucketing)、双向循环神经网络和集束搜索等。...为了安装 TensorFlow,请按照以下安装指导:https://www.tensorflow.org/install/。...注意力机制的多种实现方法可由以下链接获得:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/seq2seq/
7:机器翻译 总时间限制: 1000ms 内存限制: 65536kB描述 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。
基本概念 机器翻译和语音识别是最早开展的两项人工智能研究。今天也取得了最显著的商业成果。 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译。...在机器学习中引入注意力模型,在图像处理、机器翻译、策略博弈等各个领域中都有应用。这里的注意力机制有两个作用:一是降低模型的复杂度或者计算量,把主要资源分配给更重要的内容。...在机器翻译领域,前面我们已经确定和解释了编码、解码模型。那么第二点的输入输出相关性就显得更重要。 我们举例来说明:比如英文“I love you”,翻译为中文是“我爱你”。...python3 from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow...path_to_zip = tf.keras.utils.get_file( 'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org
parallel corpora 三个模块 各模块有什么难点 RNN 模型 最简单的 RNN 模型 扩展模型 GRU: LSTM ---- 下面是video的笔记: 1.机器翻译 机器翻译是...只用一个 RNN 就能做到机器翻译吗?目前还没有达到这个水平,最新的一篇文章,还没有超过最好的机器翻译系统。...TensorFlow 入门 Day 3. word2vec 模型思想和代码实现 Day 4. 怎样做情感分析 Day 5. CS224d-Day 5: RNN快速入门 Day 6....一文学会用 Tensorflow 搭建神经网络 Day 7. 用深度神经网络处理NER命名实体识别问题 Day 8. 用 RNN 训练语言模型生成文本 Day 9....RNN与机器翻译 Day 10. 用 Recursive Neural Networks 得到分析树 Day 11. RNN的高级应用
WMT 是机器翻译领域的国际顶级评测比赛之一。...事实上,WMT 是一个开始自 2006 年 ACL 的国际机器翻译研讨会,提供统一的数据集,内容通常集中于新闻,并将结果以竞赛的形式呈现出来,旨在促进机器翻译研究机构之间的学术交流和联系,推动机器翻译研究和技术的发展...,机器翻译顶级论文中已经几乎难以见到统计机器翻译的身影,神经机器翻译已经成为了机器翻译领域的主流。...SogouNMT 系统创新性地将许多自然语言处理门类中非翻译任务的方法用于机器翻译中,通过向神经网络添加额外的机器学习模块来提升质量来点对点解决神经机器翻译中的具体问题。...WMT 国际机器翻译评测中获得中英翻译的冠军。
最近,在被形象地命名为神经机器翻译的领域中,深度神经网络模型取得了最新的进展。 通过这篇文章,你将发现机器翻译的挑战性以及神经机器翻译模型的有效性。...什么是机器翻译? 机器翻译是将一种语言的源文本自动转换为另一种语言的文本的工作。 在一次机器翻译任务中,输入已经由某一种语言的符号序列组成,然后计算机程序必须将其转换成另一种语言的符号序列。...传统机器翻译方法的关键局限性在于制定语法所需的专业知识,以及所需的大量语法规则和特殊的例外。 什么是统计机器翻译?...什么是神经机器翻译? 神经机器翻译(简称NMT)是利用神经网络模型来学习机器翻译的统计模型。 这种方法的主要优点是可以直接对源文本和目标文本进行单一系统的培训,不再需要专门的统计机器学习系统。...总结 在这篇文章中,您了解了机器翻译的挑战性以及神经机器翻译模型的效率性。 具体来说,你学习了: 鉴于人类语言固有的模糊性和灵活性,机器翻译是具有挑战性的。
通过本文你可以学到什么 如何调用机器翻译接口 通过API 3.0 Explore体验机器翻译 通过API 3.0 SDK调用机器翻译接口 通过自行鉴权调用机器翻译接口及类似API3.0接口 前置准备 我们在准备调用机器翻译接口前...,需要一些准备工作,主要包括 注册腾讯云账号 开通机器翻译服务 申请安全凭证 以下为各步骤的详细功能 1....开通机器翻译服务 在机器翻译控制台https://console.cloud.tencent.com/tmt开通机器翻译服务 因笔者已经开通机器翻译服务,所以截取了语音合成的控制台,机器翻译的开通界面类似...https://cloud.tencent.com/document/api/213/15693的第一步即可 [截屏2020-05-02 下午4.26.06.png] 通过API 3.0 Explore体验机器翻译...Product=tmt&Version=2018-03-21&Action=TextTranslate&SignVersion=可以直接前往机器翻译的文本翻译界面 [截屏2020-05-02 下午4.45.19
最近, 深度神经网络模型在命名为神经机器翻译的领域中获得了最先进的成果. 在这篇文章中, 您将发现机器翻译的挑战性和神经机器翻译模型的有效性....自然语言处理和机器翻译手册, 第133页, 2011年. 传统机器翻译方法的关键局限性在于制定规则所需的专业知识以及海量的规则和例外. 什么是统计机器翻译?...什么是神经机器翻译? 神经机器翻译(Neural machine translation, 简称NMT)是利用神经网络模型来学习机器翻译的统计模型....文献 机器翻译的统计方法, 1990. 评论文章: 基于实例的机器翻译, 1999. 使用RNN学习短语表示的编码器 - 解码器统计机器翻译, 2014年....用于基于短语的统计机器翻译的连续空间翻译模型, 2013. 补充 机器翻译档案 神经机器翻译 - 维基百科 第13章, 神经机器翻译, 统计机器翻译, 2017.
在机器翻译(Neural Machine Translation)中,Seq2Seq模型将源序列映射到目标序列,其中Encoder部分将源序列编码为Context Vector传递给Decoder,Decoder...Encoder-decoder architecture 在输入序列很长的情况,在预测目标序列的时候,Attention机制可以使得Model能够将注意力集中在关键的相关词上,从而提升机器翻译模型的效果...initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) Optimizer和Loss Function Seq2Seq的方法把机器翻译问题转换成一个分类问题...Tensorflow中提供的CrossEntropy函数: tf.keras.losses.SparseCategoricalCrossentropy( from_logits=False, reduction
这种之前只在科幻片中存在的场景如今已成现实,而这一切都得益于机器翻译技术。 ? 那么什么是机器翻译呢?...下面我们就来探讨一下机器翻译技术的实现方式。 目前机器翻译的主流方式叫“统计翻译” 统计机器翻译的基本原理是:从语料库大量的翻译实例中自动学习翻译知识,然后利用这些翻译知识自动翻译其他句子。...萌芽 1954年,美国乔治敦大学在IBM公司协同下,用IBM-701计算机首次完成了英俄机器翻译试验,向公众和科学界展示了机器翻译的可行性,从而拉开了机器翻译研究的序幕。 ?...(图:IBM-701计算机的英俄翻译) 随后十年左右的时间内,机器翻译研究热度不断上升。美国、前苏联及一些欧洲国家均对机器翻译研究给予了相当大的重视,机器翻译一时出现热潮。...该报告全面否定了机器翻译的可行性,并宣称“在近期或可以预见的未来,开发出实用的机器翻译系统是没有指望的”。受此报告影响,各类机器翻译项目锐减,机器翻译的研究出现了空前的萧条。
安装TensorFlow 有Cuda 检查可安装的tensorflow-gpu版本范围: 安装: pip install tensorflow-gpu 无Cuda 检查可安装的tensorflow...版本范围: 安装: pip install tensorflow
可奇怪的是,无论媒体报道还是行业中都似乎营造了一种机器翻译马上要取代人类译者的气氛,这给了人们一种快要成了的错觉。...以我跟机器翻译软件打交道的经验,它们的翻译效果我一直持高度怀疑态度,但这两人却不以为然。事实上,很多很有头脑的人都是翻译软件的拥趸,极少去苛责机器翻译的浅薄,这让我很是不解。...不过,数年之后,他又抛出了一个截然不同的观点: “明眼人都清楚,机器成不了普希金,机器翻译永远都无法传达出语言本身的优雅与格调。”...即便如此,他在 1947 年“翻译即解码”的观点,早已成为驱动机器翻译发展的重要信条。...与围棋界的 AlphaGo 一般,会成为机器翻译领域的颠覆者?
BLEU 分数 运行示例 双语评估替换评分 双语评估替换分数 (简称 BLEU) 是一种对生成语句进行评估的指标 完美匹配的得分为 1.0, 而完全不匹配则得分为 0.0 这种评分标准是为了评估自动机器翻译系统的预测结果而开发的尽管它还没做到尽善尽美...Translation,2002 年发表 n 元组匹配的计数结果会被修改, 以确保将参考文本中的单词都考虑在内, 而不会对产生大量合理词汇的候选翻译进行加分在 BLEU 论文中这被称之为修正的 n 元组精度 糟糕的是, 机器翻译系统可能会生成过多的合理单词...Translation,2002 年发表 nltk.translate.bleu_score 的源码 nltk.translate 包的 API 文档 总结 在本教程中, 你探索了 BLEU 评分, 根据在机器翻译和其他语言生成任务中的参考文本对候选文本进行评估和评分
机器翻译预训练的挑战 目前绝大多数AI任务都是建立在数据的基础之上的统计学习,模型的表现效果很大程度上依赖于数据的质量和数量。...MASS和机器翻译示意图对比 上图对比分析了之前NLP预训练方法在机器翻译场景直接应用的限制。...BERT和GPT分别对应了Transformer[5] 编码器部分和解码器部分的预训练,而机器翻译用的是序列生成模型。...如何克服着两个问题,成了预训练模型在机器翻译领域应用的重要挑战。 2....作者:潘小小 字节跳动AI-Lab NLP算法工程师,目前专注多语言机器翻译,法国留学文艺女青年,现居上海。
除此之外,谷歌的一位发言人在邮件中告诉VentureBeat,最新的神经机器翻译是他们努力研发深度学习功能和机制的成果。...谷歌的神经机器翻译(GNMT)对八层长的短时记忆递归神经网络(LSTM-RNNs)的依赖性很强。“通过层间残留联系可以加强梯度流。”谷歌的科学家在他们发表的学术论文中写道。...虽然神经机器翻译并不永远是最佳之选,但是从谷歌的各种尝试中我们不难发现,在某些情况下,神经机器翻译还是有其过人之处的。 ?...“神经机器翻译还是会犯一些笔译人员永远都不可能犯的错误,比如遗漏了一些单词、把一些常见的名字或是少见的专有名词翻错、对文章的语境缺乏整体把控等等。所以,我们还是有很大的进步空间。...但不可否认的是,神经机器翻译真的具有里程碑意义。”
因此,自人工智能技术问世以来,机器翻译就成了重要的研究方向之一。机器翻译被认为是全球有待攻克的九大难题之一(排第1名),其重要性甚至超过了星际旅行。...使用ChatGPT实现机器翻译非常简单,只需给它明确的指令作为提示就可以了。 在一篇名为“Is ChatGPT A Good Translator?...对于简单的机器翻译任务而言,这样的提示指令就足够了。“Is ChatGPT A Good Translator?...然而,对于那些需要依赖机器翻译的普通用户来说,很难自行判断翻译质量的高低。这时,也可以寻求ChatGPT的帮助。例如,可以利用如下提示指令。...在现有的一些机器翻译系统中,支持术语表通常被作为高级功能提供给付费用户。如今,我们可以通过提示控制 ChatGPT用术语进行翻译,示例如下。
神经网络机器翻译(NMT)是目前最先进的机器翻译技术,通过神经网络的处理可以产生流畅的翻译。然而非机器翻译模型受到词汇外问题和罕见词问题的影响,导致翻译质量下降。...字符分割是机器翻译中为了避免词层翻译的缺点而采用的一种技术。字符分割的主要优点是它可以对任何字符组成进行建模,从而能够更好地对罕见的形态变体进行建模。
Contents 1 TensorFlow如何工作 2 TensorFlow读取数据 2.1 Preload data: constant 预加载数据 2.2 Feeding机制: placeholder..., feed_dict 2.3 Reading From File:直接从文件中读取 3 TensorFlow读取图片方法 在用CNN模型做图像识别/目标检测应用时,TensorFlow输入图像数据一般要转化为一个...在TensorFlow框架中读取数据,tf官网提供了三种读取数据的方式: 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。...通俗来讲,现在TensorFlow(1.4版本以后)有三种读取数据方式: 使用placeholder读内存中的数据 使用queue读硬盘中的数据 使用Dataset方式读取 TensorFlow如何工作...TensorFlow读取数据 Preload data: constant 预加载数据 这种方式在项目中一般很少用,我只是在学习TensorFlow编程的时候用过,后面几乎从未用到。
领取专属 10元无门槛券
手把手带您无忧上云