首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow中的那些高级API

摘要: 在这篇文章中,我们将看到一个使用了最新高级构件的例子,包括Estimator(估算器)、Experiment(实验)和Dataset(数据集)。...不妨进来看看作者是如何玩转这些高级API的。 TensorFlow拥有很多库,比如Keras、TFLearn和Sonnet,对于模型训练来说,使用这些库比使用低级功能更简单。...尽管Keras的API目前正在添加到TensorFlow中去,但TensorFlow本身就提供了一些高级构件,而且最新的1.3版本中也引入了一些新的构件。...在这篇文章中,我们将看到一个使用了这些最新的高级构件的例子,包括Estimator(估算器)、Experiment(实验)和Dataset(数据集)。...有关Estimator、Experiment和Dataset框架的注意点 有一篇名为《TensorFlow Estimators:掌握高级机器学习框架中的简单性与灵活性》的文章描述了Estimator框架的高级别设计

1.4K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow笔记:高级封装——tf.Estimator

    前言 Google官方给出了两个tensorflow高级封装——keras和Estimator,本文主要介绍tf.Estimator的内容。...tf.Estimator的特点是:既能在model_fn中灵活的搭建网络结构,也不至于像原生tensorflow那样复杂繁琐。...相比于原生tensorflow更便捷、相比与keras更灵活,属于二者的中间态。 实现一个tf.Estimator主要分三个部分:input_fn、model_fn、main三个函数。...(在这里其实是支持通过tf.keras来构造网络结构,关于tf.keras的用法我在《Tensorflow笔记:高级封装——Keras》中有详细介绍) Part3:predict任务部分。...它使用CollectiveOps,一个用于集体通信的 TensorFlow 操作,来聚合梯度并使变量保持同步。

    2.1K10

    TensorFlow 2 和 Keras 高级深度学习:1~5

    一、使用 Keras 入门高级深度学习 在第一章中,我们将介绍在本书中将使用的三个深度学习人工神经网络。...本章将: 确定为什么tf.keras库是进行高级深度学习的绝佳选择 介绍 MLP,CNN 和 RNN –高级深度学习模型的核心构建模块,我们将在本书中使用它们 提供有关如何使用tf.keras实现基于...谷歌的 TensorFlow 是一个流行的开源深度学习库,它使用 Keras 作为其库的高级 API。 通常称为tf.keras。 在本书中,我们将交替使用 Keras 和tf.keras一词。...这使得 Keras 非常适合我们想要实用且动手的时候,例如,当我们探索本书中的高级深度学习概念时。...tensorflow.keras.models import Model from tensorflow.keras.datasets import mnist from tensorflow.keras.utils

    2K10

    标准化Keras:TensorFlow 2.0中的高级API指南

    Tensorflow 2.0带来的一个重大变化就是采用keras API作为TensorFlow的标准上层API,因为我在编码中使用到keras比较多,所以对这个变化感到高兴,现翻译一篇Tensorflow...Keras是一个非常受欢迎的构建和训练深度学习模型的高级API。它用于快速原型设计、最前沿的研究以及产品中。...将Keras作为TensorFlow高级API,使得新的机器学习开发人员更容易开始使用TensorFlow。单一的高级API可以减少混乱,让我们能够专注于为研究人员提供高级功能。...使用Functional API可以构建更高级的模型,使您可以定义复杂的拓扑,包括多输入和多输出模型,具有共享层的模型以及具有残差连接的模型。...*(包括tf.contrib.slim和tf.contrib.learn等高级API)将在TF 2.0中不可用。 Estimators会发生什么变化?

    1.7K30

    TensorFlow 2.0发布在即,高级API变化抢先看

    在这篇文章中,我们将预览 TensorFlow高级 API 的未来方向,并回答大家常问的一些问题。 Keras 是广受开发者社区欢迎的高级 API,主要用于构建和训练深度学习模型。...通过将 Keras 构建为 TensorFlow高级 API,机器学习领域的新手可以更容易上手。通过单一的高级 API 可以减少混淆,让我们能够专注于为研究人员提供高级功能。...模型可以使用 TensorFlow Lite 部署在移动或嵌入式设备上,也可以使用 TensorFlow.js。...不过,你可以使用 Functional API 来构建更高级的模型,定义复杂的拓扑结构,包括多输入和多输出模型,具有共享层的模型以及具有残差连接的模型。...请注意,tf.layers 中的非面向对象层将被弃用,tf.contribution(包括高级API,如 tf.contribution.slim 和 tf.contribution.learn)在 TF

    1K10

    一文初探Tensorflow高级API使用(初学者篇)

    今天我们要向Tensorflow高级API的学习门槛迈进一步。别听到高级API就觉得是难度高的意思,其实高级API恰恰是为了降低大家的编码难度而设置的。...Tensorflow更高层的API使得配置,训练,评估多种多样的机器学习模型更简单方便了。...01 加载鸢尾花数据到TensorFlow上 首先介绍一下我们今天要使用的数据集: 鸢尾花数据集:Iris data set 由150个样本组成。...高级的API已经为我们封装好了这些模型,我们只需要直接调用方法就行) DNNClassifier这个方法需要传入4个参数: (1)feature_columns=feature_columns,将刚刚预先定义好的特征列传给参数...它是从Tensorflow官方Scikit Flow直接迁移过来的,其使用的风格与Scikit-learn相似(用python写机器学习的小伙伴应该很熟悉)。

    1K70

    Tensorflow入门教程(八)——构建原型内核和高级可视化

    上一篇我介绍了Tensorflow中常用的控制流程操作。这一篇我会说一说用Python来构建原型内核和常用可视化方法。...我们都知道Python效率是很低的,为了提高计算的效率,Tensorflow中的内核操作完全是用C++编写的。但是用C++编写Tensorflow内核是一件非常痛苦的事情。...所以我们在花费数小时来实现内核之前,首先应该尽快进行Python的原型设计,虽然这效率不高,但是这会提高编写C++版本Tensorflow内核效率。...1、用Python构建原型内核 前面我说过如何使用tf.py_func(),它是可以将任何一段Python代码转换为Tensorflow操作。...2、Tensorflow高级可视化 在实践中,我们通常使用Python ops在Tensorboard上进行可视化。例如我们在构建图像分类模型时,希望在训练期间可视化模型预测的情况。

    39630

    TFLearn:为TensorFlow提供更高级别的API 的深度学习库

    TFlearn是一个基于Tensorflow构建的模块化透明深度学习库。它旨在为TensorFlow提供更高级别的API,以促进和加速实验,同时保持完全透明并与之兼容。...TFLearn功能包括: 通过教程和示例,易于使用和理解用于实现深度神经网络的高级API。 通过高度模块化的内置神经网络层,正则化器,优化器,指标进行快速原型设计 Tensorflow完全透明。...高级API目前支持大多数最近的深度学习模型,如Convolutions,LSTM,BiRNN,BatchNorm,PReLU,残留网络,生成网络……未来,TFLearn也将与最新版本保持同步最新的深度学习模型...TensorFlow安装 TFLearn需要安装Tensorflow(版本1.0+)。...要安装TensorFlow,只需运行: pip install tensorflow 或者,支持GPU: pip install tensorflow-gpu 有关更多详细信息,请参阅TensorFlow

    82620

    TensorFlowTensorFlow读取数据

    Contents 1 TensorFlow如何工作 2 TensorFlow读取数据 2.1 Preload data: constant 预加载数据 2.2 Feeding机制: placeholder..., feed_dict 2.3 Reading From File:直接从文件中读取 3 TensorFlow读取图片方法 在用CNN模型做图像识别/目标检测应用时,TensorFlow输入图像数据一般要转化为一个...在TensorFlow框架中读取数据,tf官网提供了三种读取数据的方式: 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。...通俗来讲,现在TensorFlow(1.4版本以后)有三种读取数据方式: 使用placeholder读内存中的数据 使用queue读硬盘中的数据 使用Dataset方式读取 TensorFlow如何工作...TensorFlow读取数据 Preload data: constant 预加载数据 这种方式在项目中一般很少用,我只是在学习TensorFlow编程的时候用过,后面几乎从未用到。

    1.1K21

    安装 TensorFlow安装 TensorFlow

    安装 TensorFlow 我们已在如下配置的 64 位笔记本电脑/台式机操作系统中构建并测试过 TensorFlow: MacOS X 10.11 (El Capitan) 或更高版本 Ubuntu...下列指南介绍了如何安装让您可以使用 Python 编写应用的 TensorFlow 版本: 在 Ubuntu 上安装 TensorFlow 在 macOS 上安装 TensorFlow 在 Windows...上安装 TensorFlow 从源代码安装 TensorFlow Python TensorFlow API 的许多方面都已从版本 0.n 升级为 1.0。...以下指南介绍了如何将旧版 TensorFlow 应用迁移到版本 1.0: 转换到 TensorFlow 1.0 下列指南介绍了如何安装 TensorFlow 库以搭配其他编程语言使用。...安装适用于 Java 的 TensorFlow 安装适用于 C 的 TensorFlow 安装适用于 Go 的 TensorFlow

    4.5K20

    什么是TensorFlowTensorFlow教程

    TensorFlow教程 目的:在今天的TensorFlow教程中,我们将学习什么是TensorFlow,它在哪里使用,它的不同特性,TensorFlow应用程序,最新版本及其优缺点,以及如何在项目中使用它...TensorFlow教程|什么是TensorFlow TensorFlow的历史 DistBelief是TensorFlow在升级之前被调用的,它是在2011年作为一个基于深度学习神经网络的专有系统构建的...DistBelief的源代码经过修改,被做成了一个更好的基于应用程序的库,2015年,它被称为tensorflowTensorFlow是什么?...TensorFlow教程 其他的用途 您可以在其上构建其他的机器学习算法,比如决策树或k近邻。下面是一个由TensorFlow组成的生态系统: ? TensorFlow生态系统。...TensorFlow局限性 如果在相同的范围内导入GPU内存,则会与Theano发生冲突。 不支持OpenCL 需要有高级微积分和线性代数知识以及对机器学习的了解。

    1.1K20
    领券