$ pip install scrapy
$ pip install pymysql
Spider类想要表达的是:如何抓取一个确定了的网站的数据。比如在start_urls里定义的去哪个链接抓取,parse()方法中定义的要抓取什么样的数据。 当一个Spider开始执行的时候,它首先从start_urls()中的第一个链接开始发起请求,然后在callback里处理返回的数据。
Item类提供格式化的数据,可以理解为数据Model类。
Scrapy的Selector类基于lxml库,提供HTML或XML转换功能。以response对象作为参数生成的Selector实例即可通过实例对象的xpath()方法获取节点的数据。
$ scrapy startproject book_scrapy
这个是创建一个名为 book_scrapy的项目
$ cd book_sacrpy/
$ scrapy genspider book_spiser allitebooks.com
├── book_sacrpy
│ ├── __init__.py
│ ├── items.py
│ ├── middlewares.py
│ ├── pipelines.py
│ ├── settings.py
│ └── spiders
│ ├── __init__.py
│ └── book_spiser.py
└── scrapy.cfg
提示:pycharm里面可以一步到位
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class BookItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
# pass
title = scrapy.Field()
isbn = scrapy.Field()
price = scrapy.Field()
说明:
就是spider文件夹下的book_spider.py文件,具体代码如下,css,xpath的分析省略
# -*- coding: utf-8 -*-
import scrapy
from book_sacrpy.items import BookItem
class BookSpiserSpider(scrapy.Spider):
name = 'book_spiser'
allowed_domains = ['allitebooks.com','amazon.com']
start_urls = ['http://allitebooks.com/security/',]
def parse(self, response):
num_pages = int(response.xpath('//a[contains(@title, "Last Page →")]/text()').extract_first())
base_url = "http://www.allitebooks.com/security/page/{0}/"
for page in range(1,num_pages):
yield scrapy.Request(base_url.format(page),dont_filter=True,callback=self.pare_page)
def pare_page(self,response):
for ever in response.css('.format-standard'):
book_url = ever.css('.entry-thumbnail a::attr(href)').extract_first("")
yield scrapy.Request(book_url,callback=self.pare_book_info)
def pare_book_info(self,response):
title = response.css('.single-title').xpath('text()').extract_first()
isbn = response.xpath('//dd[2]/text()').extract_first('').replace(' ','')
items = BookItem()
items['title'] = title
items['isbn'] = isbn
amazon_price_url = 'https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=' + isbn
yield scrapy.Request(amazon_price_url,callback=self.pare_book_price,meta={'items': items})
def pare_book_price(self,response):
items = response.meta['items']
items['price'] = response.xpath('//span/text()').re(r'\$[0-9]+\.[0-9]{2}?')[0]
yield items
说明:
爬取写入到一个csv文件
$ scrapy crawl book_sacrpy -o books.csv
我们暂时不用中间件,数据库自己提前设置好表头等信息
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql
from book_sacrpy.items import BookItem
class BookIntodbPipeline(object):
def __init__(self):
self.conn = pymysql.connect("localhost","root","root","book",charset="utf8")
self.cursor = self.conn.cursor()
def process_item(self, item, spider):
insert_sql = '''
insert into book(title,isbn,price) VALUES ('{}','{}','{}')
'''
self.cursor.execute(insert_sql.format(item['title'],item['isbn'],item['price']))
self.conn.commit()
# return item
ITEM_PIPELINES = {
'book_sacrpy.pipelines.BookIntodbPipeline': 300,
}
将上面这一段注释掉,写入我们编写的那个pipeline,数字越大表示越靠后,里面可以写多个pipeline
$ scrapy crawl book_spiser
写一个run.py文件,代码如下:
# coding:utf8
from scrapy.cmdline import execute
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
execute(["scrapy", "crawl", "book_spiser"])
以后只需要运行一个python run.py
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有