FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks CVPR2017 Code: https://github.com/lmb-freiburg/flownet2
本文是对 FlowNet 的改进,改进主要有三点: 1) 在训练层面,数据库的训练的顺序很重要 the schedule of presenting data during training is very important 2)组合使用多个CNN网络, develop a stacked architecture that includes warping of the second image with intermediate optical flow 3)设计了一个专门的网络来针对小的运动
The best results are consistently achieved when first training on Chairs and only then fine-tuning on Things3D
We conjecture that the simpler Chairs dataset helps the network learn the general concept of color matching without developing possibly confusing priors for 3D motion and realistic lighting too early 先在简单的 Chairs dataset 上学习广义的颜色匹配,得到一个好的权值初始化,然后再在Things3D 学习3D运动和真实光照变化
各种网络组合,各种尝试,找到最优的组合啊
速度对比:
精度时间对比:
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有