前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用Python的statsmodels模块进行多元线性回归分析

使用Python的statsmodels模块进行多元线性回归分析

作者头像
全栈程序员站长
发布2021-04-07 10:55:33
2.2K0
发布2021-04-07 10:55:33
举报
文章被收录于专栏:全栈程序员必看

运行环境: win7python3.6 实现功能: 对多个参数进行回归分析,得出回归方程,回归统计量P值等


代码:

创建statsmodels_test.py 将下面代码复制到该py文件

代码语言:javascript
复制
from pandas import DataFrame
import statsmodels.api as sm
#import statsmodels.regression.linear_model as sm
import pandas as pd

'''
# 测试集
Stock_Market = {'Year': [2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016],
                'Month': [12, 11,10,9,8,7,6,5,4,3,2,1,12,11,10,9,8,7,6,5,4,3,2,1],
                'Interest_Rate': [2.75,2.5,2.5,2.5,2.5,2.5,2.5,2.25,2.25,2.25,2,2,2,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75],
                'Unemployment_Rate': [5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
                'Stock_Index_Price': [1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,965,943,958,971,949,884,866,876,822,704,719]        
                }

df = DataFrame(Stock_Market,columns=['Year','Month','Interest_Rate','Unemployment_Rate','Stock_Index_Price']) 

X = df[['Interest_Rate','Unemployment_Rate']] # here we have 2 variables for multiple regression. If you just want to use one variable for simple linear regression, then use X = df['Interest_Rate'] for example.Alternatively, you may add additional variables within the brackets
Y = df['Stock_Index_Price']

X = sm.add_constant(X) # adding a constant

model = sm.OLS(Y, X).fit()
predictions = model.predict(X) 

print_model = model.summary()
print(print_model)
'''


#读取文件
datafile = u'cig_data.xlsx'#文件所在位置,u为防止路径中有中文名称,此处没有,可以省略
data = pd.read_excel(datafile)#datafile是excel文件,所以用read_excel,如果是csv文件则用read_csv
examDf = DataFrame(data)
print("GOOD")
new_examDf = examDf.ix[1:, 1:]
X = new_examDf.ix[:,:4]
Y = new_examDf.ix[:,4]


X = sm.add_constant(X) # adding a constant

model = sm.OLS(Y, X).fit()
predictions = model.predict(X) 

print_model = model.summary()
print(print_model)

读取的data.xlsx文件:传送门

运行结果:

代码语言:javascript
复制
                  OLS Regression Results
==============================================================================
Dep. Variable:                Day_abs   R-squared:                       0.056
Model:                            OLS   Adj. R-squared:                  0.039
Method:                 Least Squares   F-statistic:                     3.238
Date:                Mon, 15 Jun 2020   Prob (F-statistic):             0.0132
Time:                        00:54:57   Log-Likelihood:                -1392.7
No. Observations:                 223   AIC:                             2795.
Df Residuals:                     218   BIC:                             2812.
Df Model:                           4
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         62.1170     85.299      0.728      0.467    -105.999     230.233
Age            0.1967      0.692      0.284      0.777      -1.168       1.561
Cig_Day        1.3202      0.705      1.873      0.062      -0.069       2.710
CO            -0.2645      0.103     -2.566      0.011      -0.468      -0.061
LogCOadj       0.0313      0.069      0.458      0.648      -0.104       0.166
==============================================================================
Omnibus:                       54.065   Durbin-Watson:                   1.813
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               86.116
Skew:                           1.475   Prob(JB):                     2.00e-19
Kurtosis:                       3.756   Cond. No.                     1.45e+04
==============================================================================

发布者:全栈程序员栈长,转转请注明出处:https://javaforall.cn/2153.html原文链接:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020年11月8日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 代码:
  • 运行结果:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档