使用窗口计算模拟热搜排行榜:
每隔10s计算最近20s的热搜排行榜!
DStream没有直接排序的方法!所以应该调用transform方法对DStream底层的RDD进行操作,调用RDD的排序方法!
transform(函数),该函数会作用到DStream底层的RDD上!
package cn.itcast.streaming
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* 使用SparkStreaming接收Socket数据,node01:9999
* 使用窗口计算模拟热搜排行榜:
* 每隔10s计算最近20s的热搜排行榜!
*/
object SparkStreamingDemo05_TopN {
def main(args: Array[String]): Unit = {
//1.创建环境
val conf: SparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.stripSuffix("$")).setMaster("local[*]")
val sc: SparkContext = new SparkContext(conf)
sc.setLogLevel("WARN")
val ssc: StreamingContext = new StreamingContext(sc, Seconds(5))
ssc.checkpoint("./ckp")
//2.接收socket数据
val linesDS: ReceiverInputDStream[String] = ssc.socketTextStream("node1",9999)
//3.做WordCount
val wordAndCountDS: DStream[(String, Int)] = linesDS
.flatMap(_.split(" "))
.map((_, 1))
//windowDuration:窗口长度:就算最近多久的数据,必须都是微批间隔的整数倍
//slideDuration :滑动间隔:就是每隔多久计算一次,,必须都是微批间隔的整数倍
//每隔10s(slideDuration :滑动间隔)计算最近20s(windowDuration:窗口长度)的热搜排行榜!
.reduceByKeyAndWindow((v1:Int, v2:Int)=>v1+v2, Seconds(20),Seconds(10))
//排序取TopN
//注意:DStream没有直接排序的方法!所以应该调用DStream底层的RDD的排序方法!
//transform(函数),该函数会作用到DStream底层的RDD上!
val resultDS: DStream[(String, Int)] = wordAndCountDS.transform(rdd => {
val sortedRDD: RDD[(String, Int)] = rdd.sortBy(_._2, false)
val top3: Array[(String, Int)] = sortedRDD.take(3) //取出当前RDD中排好序的前3个热搜词!
println("======top3--start======")
top3.foreach(println)
println("======top3--end======")
sortedRDD
})
//4.输出
resultDS.print()
//5.启动并等待程序停止
ssc.start()
ssc.awaitTermination()
ssc.stop(stopSparkContext = true, stopGracefully = true)
}
}