输入图像
const int N = 3; //聚类个数
// const int N1 = (int)sqrt((double)N);
//每一类用一种颜色
// const Scalar colors[] =
// {
// Scalar(0,0,255), Scalar(0,255,0),
// Scalar(0,255,255),Scalar(255,255,0)
// };
Vec3b colorTab[] =
{
Vec3b(0, 0, 255),
Vec3b(0, 255, 0),
Vec3b(255, 100, 100),
Vec3b(255, 0, 255),
Vec3b(0, 255, 255)
};
// int i, j;
// int nsamples = 100;
// Mat samples( nsamples, 2, CV_32FC1 );
// Mat labels;
// Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
// Mat sample( 1, 2, CV_32FC1 );
// samples = samples.reshape(2, 0);
// for( i = 0; i < N; i++ )
// {
// // form the training samples
// Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
// Scalar mean(((i%N1)+1)*img.rows/(N1+1),
// ((i/N1)+1)*img.rows/(N1+1));
// Scalar sigma(30,30);
// randn( samples_part, mean, sigma );
// }
// samples = samples.reshape(1, 0);
Mat sample, labels;
Mat img = imread("mmmm.jpg");
for (int i = 0; i < img.rows; i++)
for (int j = 0; j < img.cols; j++)
{
Vec3b point = img.at<Vec3b>(i, j);
Mat tmp = (Mat_<float>(1, 3) << point[0], point[1], point[2]);
sample.push_back(tmp);
}
生成训练器
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(N);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1));
em_model->trainEM( sample, noArray(), labels, noArray() );
输出图像
// classify every image pixel
int n = 0;
for( int i = 0; i < img.rows; i++ )
{
for(int j = 0; j < img.cols; j++ )
{
// sample.at<float>(0) = (float)j;
// sample.at<float>(1) = (float)i;
// int response = cvRound(em_model->predict2( sample, noArray() )[1]);
// Scalar c = colors[response];
// circle( img, Point(j, i), 1, c*0.75, FILLED );
int clusterIdx = labels.at<int>(n);
img.at<Vec3b>(i, j) = colorTab[clusterIdx];
n++;
}
}
//draw the clustered samples
// for( i = 0; i < nsamples; i++ )
// {
// Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
// circle( img, pt, 1, colors[labels.at<int>(i)], FILLED );
// }
imshow( "EM-clustering result", img );
waitKey(0);