Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >SPSS实战:单因素方差分析(ANOVA)

SPSS实战:单因素方差分析(ANOVA)

作者头像
全栈程序员站长
发布于 2022-09-18 05:50:45
发布于 2022-09-18 05:50:45
23.4K1
举报

大家好,又见面了,我是你们的朋友全栈君。

SPSS:单因素方差分析

方差分析

方差分析是一种假设检验,它把观测总变异的平方和与自由度分解为对应不同变异来源的平方和与自由度,将某种控制性因素所导致的系统性误差和其他随机性误差进行对比,从而推断各组样本之间是否存在显著性差异,以分析该因素是否对总体存在显著性影响。方差分析法采用离差平方和对变差进行度量,从总离差平方和分解出可追溯到指定来源的部分离差平方和。方差分析要求样本满足以下条件:

  1. 可比性:资料中各组均数本身必须具有可比性,这是方差分析的前提;
  2. 正态性:方差分析要求样本来源于正态分布总体,偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析;
  3. 方差齐性:方差分析要求各组间具有相同的方差,即满足方差齐性。

单因素方差分析

单因素方差分析用于分析单一控制变量影响下的多组样本的均值是否存在显著性差异。

单因素方差分析的原理

单因素方差分析也称为一维方差分析,用于分析单个控制因素取不同水平时因变量的均值是否存在显著差异。单因素方差分析基于各观测量来自于相互独立的正态样本和控制变量不同水平的分组之间的方差相等的假设。单因素方差分析将所有的方差划分为可以由该因素解释的系统性偏差部分和无法由该因素解释的随机性偏差,如果系统性偏差明显超过随机性偏差,则认为该控制因素取不同水平时因变量的均值存在显著差异。

单因素方差分析的SPSS操作

例:

step1 建立数据文件

在SPSS中建立数据文件

step2 命令选项

在菜单栏中选择“分析”→“比较平均值”→“单因素ANOVA检验”命令,打开如图所示的“单因素ANOVA检验”对话框。

step3 选择变量

“因变量列表”列表框:该列表框中的变量为要进行方差分析的目标变量,称为因变量,因变量一般为度量变量,类型为数值型。 “因子”列表框:该列表框中的变量为因子变量,又称自变量,主要用来分组。如果要比较两种教学方法下学生的数学成绩是否一致,则数学成绩变量就是因变量,教学方法就是因子变量。自变量为分类变量,其取值可以为数字,也可以为字符串。因子变量值应为整数,并且为有限个类别。 此题中,“重量”应选入“因变量列表”列表框中,“机器”为因子,选入“因子”列表框中,如图所示。

step4 进行相应的设置

(一)“对比”设置
  1. “多项式” 复选框: 该复选框用于对组间平方和划分成趋势成分,或者指定先验对比,按因子顺序进行趋势分析。选中“多项式”复选框,则“等级”下拉列表框就会被激活,然后就可以对趋势分析指定多项式的形式,如“线性”“二次项”“立方”“四次项”“五次项”。
  2. “系数” 文本框: 该文本框用于对组间平均数进行比较定制,即指定的用t统计量检验的先验对比。为因子变量的每个组(类别)输入一个系数,每次输入后单击“添加”按钮,每个新值都添加到系数列表框的底部。要指定其他对比组,可单击“下一页”按钮。利用“下一页”和“上一页”按钮在各组对比间移动。系数的顺序很重要,因为该顺序与因子变量类别值的升序相对应。列表框中的第一个系数与因子变量的最低组值相对应,而最后一个系数与最高值相对应。

本题中,选中“多项式”复选框,并将“等级”设为了“线性”。

(二)“两两比较”设置
  1. “假定等方差” 选项组:该选项组主要用于在假定等方差下进行两两范围检验和成对多重比较,共有14种检验方法
  1. “不假定等方差” 选项组: 该选项组主要用于在不假定等方差下进行两两范围检验和成对多重比较,选项组中含有4个复选框:塔姆黑尼T2,选中该复选框,表示输出基于t检验的保守成对比较结果。邓尼特T3,选中该复选框,表示执行学生化最大值模数的成对比较检验。盖姆斯-豪厄尔,选中该复选框,表示执行方差不齐的成对比较检验,且该方法比较常用。邓尼特C,选中该复选框,表示执行基于学生化范围的成对比较检验。
  2. “显著性水平” 文本框: 该文本框用于指定两两范围检验和成对多重比较检验的显著水平,输入范围是0.01~0.99,系统默认为0.05。

本题选择了“邦弗伦尼”复选框。

(三)“选项”设置
  1. “统计” 选项组: 该选项组主要用于指定输出的统计量,包括: ①描述:表示要输出每个因变量的个案数、平均值、标准差、均值标准误差、最小值、最大值和95%置信区间。 ②固定和随机效应:表示把数据看作面板数据进行回归,以计算固定效应模型的标准差、标准误和95%置信区间,以及随机效应模型的标准误、95%置信区间和成分间方差估计。 ③方差齐性检验:即莱文方差齐性检验。 ④布朗-福塞斯:表示计算布朗-福塞斯统计量以检验组均值是否相等,特别是当莱文方差齐性检验显示方差不等时,该统计量优于F统计量。 ⑤韦尔奇:计算Welch统计量以检验组均值是否相等,与布朗-福塞斯类似,当莱文方差齐性检验显示方差不等时,该统计量优于F统计量。
  2. “缺失值” 选项组: 该选项组主要用于当检验多个变量,有一个或多个变量的数据缺失时,可以指定检验剔除哪些个案,有两种方法: ①按具体分析排除个案:表示给定分析中的因变量或因子变量有缺失值的个案不用于该分析,也不使用超出因子变量指定范围的个案。 ②成列排除个案:表示因子变量有缺失值的个案,或者在主对话框“因变量列表”列表框中缺失的个案都排除在所有分析之外。如果尚未指定多个因变量,那么这个选项不起作用。
  3. “平均值图” 复选框: 该复选框用于绘制每组的因变量平均值分布图,组别是根据因子变量控制的。

在本题中,选择了“方差齐性检验”和“平均值图”。

step5 分析结果输出

单击“确定”按钮,即可在SPSS Statistics查看器窗口得到单因素方差分析的结果。

实验结果及分析

上图输出结果中给出了方差齐性检验的结果,从中可以看出,莱文方差齐性检验的显著性为0.456,大于显著水平0.05,因此基本可以认为样本数据之间的方差是齐次的。

上图是单因素方差分析的结果,从中可以看出,组间平方和是176.533、组内平方和是22.800,其中组间平方和的F值为46.456,显著性是0.000,小于显著水平0.05,因此我们认为不同的机器类型对产品重量有显著的影响。 另外,这个表中也给出了线性形式的趋势检验结果,组间重量被机器类型所能解释(对比)的部分是48.400,被其他因素解释(偏差)的有128.133,并且组间重量被其他因素所能解释的部分是非常显著的。

上图给出了多重比较的结果,*表示该组均值差是显著的。因此,从中可以看出,机器1和机器2、机器3的产品重量均值差是非常明显的。另外,还可以得到每组之间均值差的标准误差、置信区间等信息。

上图给出了各组的均值图。从图中可以清楚地看到不同的机器类型对应的不同的产品质量均值。可见,机器1的产品重量最低,且与其他两组的质量均值相差较大,这个结果和多重比较的结果非常一致。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/157842.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
1 条评论
热度
最新
您好,请问单因素ANOVA检验中的因子可以是有序分类变量吗?
您好,请问单因素ANOVA检验中的因子可以是有序分类变量吗?
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
spss中进行单因素方差分析的操作步骤是_双因素方差分析交互作用判断
方差分析是检验多个总体均值是否相等的统计方法,本质上研究的是分类型自变量对数值型因变量的影响。
全栈程序员站长
2022/09/20
2.2K0
spss中进行单因素方差分析的操作步骤是_双因素方差分析交互作用判断
spss完成单因素方差分析和T检验的简单小例子
对照组有3个样本con1,con2,con3;模型组有3个样本M1,M2,M3;两个指标MDA和GSH,共有2组数据,可以采用T检验也可以采用单因素方差分析;一般两组数据习惯性用T检验。
用户7010445
2020/12/18
3.9K0
spss完成单因素方差分析和T检验的简单小例子
SPSS单因素方差分析教程「建议收藏」
即比较不同组别的平均值有没有差异。比如我想比较A/B/C三个班的平均年龄有没有差异,就是个很典型的单因素方差分析案例,因素只有班级这一个。举医学上的例子就是:轻度组/中度组/重度组的治疗效果。
全栈程序员站长
2022/09/27
3.7K0
SPSS单因素方差分析教程「建议收藏」
spss之单因素方差分析因子不显示_无重复单因素方差分析
方差分析又称F检验,在实际应用中常常需要对多个整体的均值进行比较,并分析他们之间是否存在差异,差异是否显著,这个时候我们就需要使用方差分析。
全栈程序员站长
2022/11/09
4.3K0
spss之单因素方差分析因子不显示_无重复单因素方差分析
统计学 方差分析_python编写计算方差的函数
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均值的变异情况,则总变异有以下两个来源:
全栈程序员站长
2022/09/27
1.3K0
SPSS-单因素方差分析(ANOVA) 案例解析[通俗易懂]
继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。
全栈程序员站长
2022/09/07
13.8K0
SPSS-单因素方差分析(ANOVA) 案例解析[通俗易懂]
经典方差分析:手把手教你读懂、会用1
当解释变量包含名义型和有序型的因子时,我们关注的重点往往在于组间的差异分析。这是非常必要的,尤其是考虑到科学研究中样品分组是普遍存在的,而样品组或者聚类分析获得的聚类簇都不能转化为连续的数值,均需要作为引子进行分析。这种组间的比较分析我们可以称之为方差分析(analysisof variance,ANOVA)。方差分析通过F检验来进行效果评测,与t检验一样,是一种参数检验方法,需要用到总体分布的参数特征(均值、方差),因此是针对符合正态分布总体的样本数据进行分析。
SYSU星空
2022/05/05
4.2K0
经典方差分析:手把手教你读懂、会用1
方差分析法
工程实现的过程中需要对提取的特征指标进行有效性分析,评价各个特征指标与分类器不同类别的显著性关系,筛选出对不同类别判别贡献率最佳的指标,为设计分类器等提供支持。
全栈程序员站长
2022/11/03
1.1K0
方差分析法
方差分析与R实现
方差分析泛应用于商业、经济、医学、农业等诸多领域的数量分析研究中。例如商业广告宣传方面,广告效果可能会受广告式、地区规模、播放时段、播放频率等多个因素的影响,通过方差分析研究众多因素中,哪些是主要的以及如何产生影响等。而在经济管理中,方差分析常用于分析变量之间的关系,如人民币汇率对股票收益率的影响、存贷款利率对债券市场的影响,等等。 协方差是在方差分析的基础上,综合回归分析的方法,研究如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术。 单因素方差分析及R实现 (1)正态性检验
机器学习AI算法工程
2018/03/12
2K0
方差分析与R实现
R语言数据分析与挖掘(第五章):方差分析(1)——单因素方差分析
方差分析(analysis of variation,简写为ANOVA)又称变异数分析或F检验,用于两个及两个以上样本均值差别的显著性检验,从函数的形式看,方差分析和回归都是广义线性模型的特例,回归分析lm()也能作方差分析。其目的是推断两组或多组数据的总体均值是否相同,检验两个或多个样本均值的差异是否有统计学意义。方差分析的基本思路为:将试验数据的总变异分解为来源于不同因素的相应变异,并作出数量估计,从而明确各个变异因素在总变异中所占的重要程度;也就是将试验数据的总变异方差分解成各变因方差,并以其中的误差方差作为和其他变因方差比较的标准,以推断其它变因所引起的变异量是否真实的一种统计分析方法。把对试验结果发生影响和起作用的自变量称为因素(factor),即我们所要检验的对象。如果方差分析研究的是一个因素对于试验结果的影响和作用,就称为单因素方差分析。因素的不同选择方案称之为因素的水平(level of factor)或处理(treatment)。因素的水平实际上就是因素的取值或者是因素的分组。样本数据之间差异如果是由于抽样的随机性造成的,称之为随机误差;如果是由于因素水平本身不同引起的差异,称之为系统误差。
DoubleHelix
2019/12/13
6K0
R语言数据分析与挖掘(第五章):方差分析(1)——单因素方差分析
datawhale学习小组 Task4:方差分析
方差分析(Analysis of variance, ANOVA) :——又称“变异数分析” ①用于两个及两个以上样本均数差别的显著性检验 ②主要研究分类变量作为自变量时,对因变量的影响是否是显著
诡途
2022/05/09
1.1K0
datawhale学习小组 Task4:方差分析
《spss统计分析与行业应用案例详解》实例33单因素方差分析 34多因素方差分析
总离差平方和3318.482,组间离差平方和1379.722,组内离差平方和1938.76,组间离差平方和中可以被线性解释的部分为557.904,方差检验F=3.795,对应的显著性为0.031,小于显著性水平0.05,因此认为四组中至少有一组与两外一组存在显著性差异。
Ai学习的老章
2019/04/10
3.1K0
《spss统计分析与行业应用案例详解》实例33单因素方差分析  34多因素方差分析
方差分析
假如你们现在针对用户提出了三种提高客单价的策略A、B、C,现在想看一下这三种策略最后对提高客单价的效果有什么不同,那我们怎么才能知道这三种策略效果有什么不同?最简单的方法就是做一个实验,我们可以随机挑选一部分用户,然后把这些用户分成三组A、B、C组,A组用户使用A策略、B组用户使用B策略、C组用户使用C策略,等策略实施一段时间以后,我们来看一下这三组分别的客单价是什么水平?哪组平均客单价高,就说明哪组策略有效果。真的可以得出这的结论吗?是可以,但是不够严谨。
张俊红
2019/08/15
1.1K0
单因素方差分析及其相关检验
(1)问题与数据 设某因子有r个水平,记为,在每一水平下各做m次独立重复试 验,若记第i个水平下第j次重复的试验结果为,所有试验的结果可列表如下:
用户3577892
2021/01/02
1.8K0
单因素方差分析及其相关检验
R语言_方差分析
在回归分析中,通过量化的预测变量来预测量化的响应变量,建立了相应的回归模型。 同时,预测变量也不一定是量化的,还可以是名义型或者有序型变量。这种情况下,关注的重点通常在组间的差异性分析,称为方差分析(ANOVA)。
用户1147754
2019/05/26
1.6K0
spss实现单因素方差分析怎么做_双因素方差分析例题
检验单因素水平下的一个或多个独立因变量均值是否存在显著性差异,即检验单因素各个水平的均值是否来自同一个总体。(因变量为连续变量)
全栈程序员站长
2022/11/02
6930
spss实现单因素方差分析怎么做_双因素方差分析例题
方差分析的统计模型_统计学标准差怎么算
上面提到的灯泡寿命问题是单因素试验,小麦产量问题是多因素试验。处理这些试验结果的统计方法就称为单因素方差分析和双因素方差分析。
全栈程序员站长
2022/11/03
1.5K0
方差分析的统计模型_统计学标准差怎么算
【数据分析 R语言实战】学习笔记 第八章 单因素方差分析与R实现
方差分析泛应用于商业、经济、医学、农业等诸多领域的数量分析研究中。例如商业广告宣传方面,广告效果可能会受广告式、地区规模、播放时段、播放频率等多个因素的影响,通过方差分析研究众多因素中,哪些是主要的以及如何产生影响等。而在经济管理中,方差分析常用于分析变量之间的关系,如人民币汇率对股票收益率的影响、存贷款利率对债券市场的影响,等等。
Ai学习的老章
2019/04/10
2.6K0
【数据分析 R语言实战】学习笔记 第八章  单因素方差分析与R实现
手把手教你R语言方差分析ANOVA
方差分析(ANOVA)是一种统计方法,用于比较两组或多组数据之间的均值差异。在R语言中,实现方差分析主要涉及到以下步骤:
生信学习者
2024/06/12
1.3K0
手把手教你R语言方差分析ANOVA
spss分析怎么用?一篇文章带你全面了解spss分析使用方法(超详细版)
在当今数据驱动的时代,统计分析对于各个领域的研究和决策都起着至关重要的作用。而SPSS作为一款强大的统计分析软件,掌握它的使用方法能为我们解决诸多数据难题。借助图灵论文AI写作助手,可以更高效地探索SPSS的世界。接下来,就让我们一同深入了解SPSS的基础入门、基本统计分析以及高级应用与案例分析等内容,开启数据统计分析的精彩之旅。
抹茶生巧
2025/09/08
1.2K0
spss分析怎么用?一篇文章带你全面了解spss分析使用方法(超详细版)
推荐阅读
相关推荐
spss中进行单因素方差分析的操作步骤是_双因素方差分析交互作用判断
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档