Apache Kylin
(麒麟)是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。
官网:https://kylin.apache.org/cn
Kylin的主要特点包括支持SQL接口
、支持超大规模数据集
、亚秒级响应
、可伸缩性
、高吞吐率
、BI工具集成
等。
数据仓库是一个各种数据 (包括历史数据和当前数据)的中心存储系统,是 BI (business intelligence ,商业智能) 的核心部件。
在维度建模中,将度量称为“事实” ,将环境描述为“维度”。维度是用于分析事实所需要的多样环境。例如,在分析交易过程时,可以通过买家、卖家、商品和时间等维度描述交易发生的环境。事实则紧紧围绕着业务过程来设计,通过获取描述业务过程的度量来表达业务过程,包含了引用的维度和与业务过程有关的度量。例如订单作为交易行为的核心载体,直观反映了交易的状况。订单的流转会产生很多业务过程,而下单、支付和成功完结三个业务过程是整个订单的关键节点。获取这三个业务过程的笔数、金额以及转化率是日常数据统计分析的重点,事务事实表设计可以很好地满足这个需求。
即观察数据的角度。比如员工数据,可以从性别角度来分析,也可以更加细化,从入职时间或者地区的维度来观察。维度是一组离散的值,比如说性别中的男和女,或者时间维度上的每一个独立的日期。因此在统计时可以将维度值相同的记录聚合在一起,然后应用聚合函数做累加、平均、最大和最小值等聚合计算。
即被聚合(观察)的统计值,也就是聚合运算的结果。比如说员工数据中不同性别员工的人数,又或者说在同一年入职的员工有多少。
商业智能通常被理解为将企业中现有的数据 转化为知识,帮助企业做出明智的业务经营决策的工具。为了将数据转化为知识,需要利用数据仓库 、联机分析处理( OLAP )工具和数据挖掘等技术。
OLAP是一种软件技术,它使分析人员能够迅速、一致、交互地 从各个方面观察信息 ,以达到深入理解数据的目的。从各方面观察信息,也就是从不同的维度
分析数据,因此 OLAP 也成为 多维分析。
ROLAP : 基于关系型数据库,不需要预计算。 MOLAP:基于多维数据集(一个多维数据集称为一个OLAP Cube),需要预计算。
有了维度跟度量后就有了根据维度和度量做预计算的Cube理论。给定一个数据模型,我们可以对其上的所有维度进行聚合,对于N个维度来说,组合的所有可能性共有2n种。对于每一种维度的组合,将度量值做聚合计算,然后将结果保存为一个物化视图,称为Cuboid。所有维度组合的Cuboid作为一个整体,称为Cube。
当所有维表都直接连接到事实表上时,整个图解就像星星一样,故将该模型称为星型模型。该模型通过大量的冗余来提升查询效率,对OLAP场景较友好。
当有一个或多个维表没有直接连接到事实表上,而是通过其他维度表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。该模型在MySQL、Oracle中常见。
星型模型 VS 雪花模型
Kylin官方架构图
REST Server是一套面向应用程序开发的入口点,旨在实现针对Kylin平台的应用开发工作。此类应用程序可以提供查询、获取结果、触发Cube构建任务、获取元数据以及获取用户权限等等。另外可以通过Restful接口实现SQL查询。
当Cube准备就绪后,查询引擎就能够获取并解析用户查询。它随后会与系统中的其它组件进行交互,从而向用户返回对应的结果。查询SQL转化为底层任务, 数据存储到HBase。
负责将解析的SQL生成的执行计划转换成Cube缓存的查询,Cube是通过预计算缓存在hbase中,这部分查询可以在秒级设置毫秒级完成,而且还有一些操作使用过的查询原始数据(存储在Hadoop的HDFS中通过Hive查询)。这部分查询延迟较高(为避免查询原始数据,默认关闭)。
Kylin是一款元数据驱动型应用程序。元数据
管理工具是一大关键性组件,用于对保存在Kylin当中的所有元数据进行管理,其中包括最为重要的Cube元数据。其它全部组件的正常运作都需以元数据管理工具为基础。Kylin的元数据存储在Hbase
中。
这套引擎的设计目的在于处理所有离线任务,其中包括Shell脚本、Java API以及Map Reduce任务等等。任务引擎对Kylin当中的全部任务加以管理与协调,从而确保每一项任务都能得到切实执行并解决其间出现的故障。
Kylin的工作原理就是对数据模型做Cube预计算,并利用计算的结果加速查询:
主要有逐层构建算法、快速构建算法 两种。
一个N维的Cube,是由1个N维子立方体、N个(N-1)维子立方体、N*(N-1)/2个(N-2)维子立方体、……、N个1维子立方体和1个0维子立方体构成,总共有2^N个子立方体组成,在逐层算法中,按维度数逐层减少来计算,每个层级的计算(除了第一层,它是从原始数据聚合而来),是基于它上一层级的结果来计算的。比如,[Group by A, B]的结果,可以基于[Group by A, B, C]的结果,通过去掉C后聚合得来的;这样可以减少重复计算;当 0维度Cuboid计算出来的时候,整个Cube的计算也就完成了。
每一轮的计算都是一个MapReduce任务,且串行执行;一个N维的Cube,至少需要N+1次MapReduce Job。
算法优点:
算法缺点:
快速构建算法也被称作“逐段”(By Segment) 或“逐块”(By Split) 算法,从1.5.x开始引入该算法,利用Mapper端计算先完成大部分聚合,再将聚合后的结果交给Reducer,从而降低对网络瓶颈的压力。该算法的主要思想是,对Mapper所分配的数据块,将它计算成一个完整的小Cube 段(包含所有Cuboid);每个Mapper将计算完的Cube段输出给Reducer做合并,生成大Cube
,也就是最终结果;如图所示解释了此流程。
快速Cube算法 与旧算法相比,快速算法主要有两点不同。
假设维度字典表具体信息如下。
字典表信息 加入我们选择了 address、catogory、date为维度进行Cube聚合。我们需要知道Cube底层是如何预聚合后把数据存储到HBase中的。
Cube存储 系统会按照所有的维度选跟不选做01映射,然后每个维度选了后也有对应的维度值做映射。此时 key = Cubeid + 纬度值, value = 对应预聚合结果。
Kylin 是依赖于Hadoop、HBase、Zookeeper、Spark的,所以安装时需确保所有的前置依赖是OK的。至于安装细节,找个百度教程即可。
在Kylin安装完毕后,需要构建数据源、创建Model、创建Cube等操作,都是一些常规操作,没啥说的。创建模型时整体有点类似PowerBI,需要选择表Join的方式跟字段,选择事实表跟维度的指标跟维度。
因为Routing默认关闭,为了保证OLAP查询的性能稳定,不会出现忽快忽慢的场景,有如下个约束条件。
创建时候如果是A join B,则查询时也只能这样查询。
如果我们选择了4个维度,则在进行OLAP查询时候也只能选择这个四个维度进行groupBy。
如果在构建Cube时,只添加两个指标,则查询时候也只能查询这俩。别的都不能查询。
衍生维度用于在有效维度内将维度表上的非主键维度排除掉,并使用维度表的主键(其
实是事实表上相应的外键)来替代它们。Kylin 会在底层记录维度表主键与维度表其他维度之间的映射关系,以便在查询时能够动态地将维度表的主键“翻译”成这些非主键维度,并进行实时聚合
,(一般不建议开,可能会导致查询耗时变大)。
衍生维度
聚合组就是一个强大的剪枝工具,通过指定不同的剪枝策略可以缩小维度组合个数。
强制维度 强制维度(Mandatory),如果一个维度被定义为强制维度,分组后的维度组合结果一定要包含该维度,但是强制维度不能自己出现。
层级维度 如果指定了维度直接的依赖关系,比如 维度A(年) -> 维度B(月)。维度B不能单独出现,必须B想出现的话必须有A。
联合维度 每个联合中包含两个或更多个维度,如果某些列形成一个联合,那么在该分组产生的任何Cuboid中,这些联合维度要么一起出现,要么都不出现。
Kylin 会把所有的维度按照顺序组合成一个完整的Rowkey,并且按照这个Rowkey 升序
排列Cuboid 中所有的行。设计良好的Rowkey 将更有效地完成数据的查询过滤和定位,减少IO 次数,提高查询速度,维度在rowkey 中的次序,对查询性能有显著的影响。
如果A的枚举值是1、2、3、4。B的枚举值a、b、c、d。
过滤
如下,想生成AB的结果,则可从ABC、ABD中出结果(ABD结果行数更少),因为kylin系统默认选择cubeid小的,所以基数打的维度尽量前调。
由三个维度生成两个维度
Kylin : https://www.bilibili.com/video/BV1QU4y1F7QH?p=19