前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Leetcode solution 2304. Minimum Path Cost in a Grid

Leetcode solution 2304. Minimum Path Cost in a Grid

作者头像
包子面试培训
发布2022-11-11 14:53:55
3250
发布2022-11-11 14:53:55
举报
文章被收录于专栏:包子铺里聊IT

Wassup 包粉们,好久不见,甚是想念 😀 密码想起来了。。。

Blogger: https://blog.baozitraining.org/2022/06/leetcode-solution-2304-minimum-path.html

Youtube: https://youtube.com/shorts/eV0kLfZuYZE?feature=share

B站: https://b23.tv/WdYkirD

博客园: https://www.cnblogs.com/baozitraining/p/16410625.html

Ref: cover art by Clark Miller

Problem Statement

You are given a 0-indexed m x n integer matrix grid consisting of distinct integers from 0 to m * n - 1. You can move in this matrix from a cell to any other cell in the next row. That is, if you are in cell (x, y) such that x < m - 1, you can move to any of the cells (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1). Note that it is not possible to move from cells in the last row.

Each possible move has a cost given by a 0-indexed 2D array moveCost of size (m * n) x n, where moveCost[i][j] is the cost of moving from a cell with value i to a cell in column j of the next row. The cost of moving from cells in the last row of grid can be ignored.

The cost of a path in grid is the sum of all values of cells visited plus the sum of costs of all the moves made. Return the minimum cost of a path that starts from any cell in the first row and ends at any cell in the last row.

Example 1:

代码语言:javascript
复制
Input: grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]Output: 17Explanation: The path with the minimum possible cost is the path 5 -> 0 -> 1.
- The sum of the values of cells visited is 5 + 0 + 1 = 6.
- The cost of moving from 5 to 0 is 3.
- The cost of moving from 0 to 1 is 8.
So the total cost of the path is 6 + 3 + 8 = 17.

Example 2:

代码语言:javascript
复制
Input: grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]Output: 6Explanation: The path with the minimum possible cost is the path 2 -> 3.
- The sum of the values of cells visited is 2 + 3 = 5.
- The cost of moving from 2 to 3 is 1.
So the total cost of this path is 5 + 1 = 6.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 50
  • grid consists of distinct integers from 0 to m * n - 1.
  • moveCost.length == m * n
  • moveCost[i].length == n
  • 1 <= moveCost[i][j] <= 100

Problem link

Video Tutorial

You can find the detailed video tutorial here

  • Youtube
  • B站

Thought Process

A classic DP problem (Dynamic Programming) because it's either ask you a boolean yes or no questions, Or ask for extreme values, e.g., min, max

  • Build up a minCost 2 day array, each array element denotes by far the min cost to reach to that element
  • Make sure to initialize the values.
代码语言:javascript
复制
public int minPathCost(int[][] grid, int[][] moveCost) {
  if (grid == null || grid.length == 0 || grid[0] == null || grid[0].length == 0 || moveCost == null) {
    return -1; // or throw exception
  }

  int[][] minCost = new int[grid.length][grid[0].length];
  for (int i = 0; i < minCost[0].length; i++) {
    minCost[0][i] = grid[0][i];  // first row costs are the init values
  }

  for (int i = 1; i < minCost.length; i++) {
    for (int j = 0; j < minCost[0].length; j++) {
      int min = Integer.MAX_VALUE;
      for (int k = 0; k < minCost[0].length; k++) {
        min = Math.min(min, minCost[i - 1][k] + moveCost[grid[i - 1][k]][j]);
      }
      minCost[i][j] = grid[i][j] + min;
    }
  }
  int finalMin = Integer.MAX_VALUE;

  for (int i = 0; i < minCost[0].length; i++) {
    finalMin = Math.min(minCost[minCost.length - 1][i], finalMin);
  }
  return finalMin;
}

Time Complexity: O(N^3) since going through the 2-d array and another nested loop

Space Complexity: O(N^2) used the 2-d minCost array

References

  • None
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 包子铺里聊IT 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Problem Statement
  • Video Tutorial
  • Thought Process
  • References
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档