前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【内含baseline】Kaggle机器学习新赛指南!

【内含baseline】Kaggle机器学习新赛指南!

作者头像
zenRRan
发布2023-08-22 14:27:52
1930
发布2023-08-22 14:27:52
举报

日前,Kaggle发布了ICR - Identifying Age-Related Conditions疾病识别大赛。这是一个机器学习中的二分类任务,需要你使用ML的方法对病人进行诊断,判断病人是否有相关疾病,从而为医生提供进行合理诊断的依据。

本次比赛提供了4份数据,分别是:

train、test、sample_submission、greeks。其中:

train文件标记了每个病人的相关特征和label。

test、sample_submission为提交答案时用。

greeks是补充元数据,仅适用于训练集。

训练数据分析

代码语言:javascript
复制
Number of rows in train data: 617
Number of columns data: 58

数据样例:

数据分布:

相关性分析:

构建训练数据

读取数据,具体可以详见baseline代码,里面有更为详细的介绍

代码语言:javascript
复制
train             = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
test              = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/test.csv')
greeks            = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/greeks.csv')
sample_submission = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/sample_submission.csv')

Baseline流程

加载数据,特征处理:

代码语言:javascript
复制
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

# Combine numeric and categorical features
FEATURES = num_cols + cat_cols

# Fill missing values with mean for numeric variables
imputer = SimpleImputer(strategy='mean')
numeric_df = pd.DataFrame(imputer.fit_transform(train[num_cols]), columns=num_cols)

# Scale numeric variables using min-max scaling
scaler = MinMaxScaler()
scaled_numeric_df = pd.DataFrame(scaler.fit_transform(numeric_df), columns=num_cols)

# Encode categorical variables using one-hot encoding
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
encoded_cat_df = pd.DataFrame(encoder.fit_transform(train[cat_cols]), columns=encoder.get_feature_names_out(cat_cols))

# Concatenate the scaled numeric and encoded categorical variables
processed_df = pd.concat([scaled_numeric_df, encoded_cat_df], axis=1)

定义训练函数:

代码语言:javascript
复制
from sklearn.utils import class_weight

FOLDS = 10
SEED = 1004
xgb_models = []
xgb_oof = []
f_imp = []

counter = 1
X = processed_df
y = train['Class']

# Calculate the sample weights
weights = class_weight.compute_sample_weight('balanced', y)

skf = StratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=SEED)
for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)):
    if (fold + 1)%5 == 0 or (fold + 1) == 1:
        print(f'{"#"*24} Training FOLD {fold+1} {"#"*24}')
        
    X_train, y_train = X.iloc[train_idx], y.iloc[train_idx]  
    X_valid, y_valid = X.iloc[val_idx], y.iloc[val_idx]
    watchlist = [(X_train, y_train), (X_valid, y_valid)]
    
    # Apply weights in the XGBClassifier
    model = XGBClassifier(n_estimators=1000, n_jobs=-1, max_depth=4, eta=0.2, colsample_bytree=0.67)
    model.fit(X_train, y_train, sample_weight=weights[train_idx], eval_set=watchlist, early_stopping_rounds=300, verbose=0)
    
    val_preds = model.predict_proba(X_valid)[:, 1]
    
    # Apply weights in the log_loss
    val_score = log_loss(y_valid, val_preds, sample_weight=weights[val_idx])
    best_iter = model.best_iteration
    
    idx_pred_target = np.vstack([val_idx,  val_preds, y_valid]).T
    f_imp.append({i: j for i, j in zip(X.columns, model.feature_importances_)})
    print(f'{" "*20} Log-loss: {val_score:.5f} {" "*6} best iteration: {best_iter}')          
    
    xgb_oof.append(idx_pred_target)   
    xgb_models.append(model)  
    
print('*'*45)
print(f'Mean Log-loss: {np.mean([log_loss(item[:, 2], item[:, 1], sample_weight=weights[item[:, 0].astype(int)]) for item in xgb_oof]):.5f}')               

特征重要性查看:

代码语言:javascript
复制
# Confusion Matrix for the last fold
cm = confusion_matrix(y_valid, model.predict(X_valid))

# Feature Importance for the last model
feature_imp = pd.DataFrame({'Value':xgb_models[-1].feature_importances_, 'Feature':X.columns})
feature_imp = feature_imp.sort_values(by="Value", ascending=False)
feature_imp_top20 = feature_imp.iloc[:20]

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

# Subplot 1: Confusion Matrix
sns.heatmap(cm, annot=True, fmt='d', ax=ax[0], cmap='YlOrRd')
ax[0].set_title('Confusion Matrix')
ax[0].set_xlabel('Predicted')
ax[0].set_ylabel('True')

# Subplot 2: Feature Importance
sns.barplot(x="Value", y="Feature", data=feature_imp_top20, ax=ax[1], palette='YlOrRd_r')
ax[1].set_title('Feature Importance')

plt.tight_layout()
plt.show()
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习自然语言处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档