生成背景音乐可以使用Meta开源的AudioCraft项目。
开源项目地址:https://github.com/facebookresearch/audiocraft
输入:prompt,描述音乐的风格。
输出:音乐文件目录
简单测试生成音乐,代码如下,可能消耗比较多的GPU内存。
Prompt示例:There are obvious heavy drums and create a hot and enthusiastic atmosphere.
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
model = MusicGen.get_pretrained('melody')
model.set_generation_params(duration=48) # generate 8 seconds.
descriptions = ['There are obvious heavy drums and create a hot and enthusiastic atmosphere']
wav = model.generate(descriptions) # generates 3 samples.
for idx, one_wav in enumerate(wav):
# Will save under {idx}.wav, with loudness normalization at -14 db LUFS.
audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
若需要封装成服务提供API接口,可以参考如下。
使用了Queue队列,考虑到资源,目前是串行的队列,后续请求堵塞,在请求结束时,才从队列中取出当前任务,表示当前任务完成。
import os
import time
import logging
import torch
from datetime import datetime
from fastapi import FastAPI
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from queue import Queue
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(lineno)d: %(message)s',
filename='music_gen_service.log',
encoding='utf-8',
level=logging.DEBUG)
app = FastAPI()
request_queue = Queue(maxsize=10) # 设置队列最大容量为10
output_dir = "../data/music_gen"
@app.get('/api/music_gen')
def generate(description: str, duration: int):
logging.info(f"music generate start, duration: {duration}, description: {description}")
try:
request_queue.put(1, block=True, timeout=None) # 将请求放入队列,如果队列已满则阻塞
logging.info(f"music generate start, duration: {duration}, description: {description}")
now = datetime.now()
today = "/" + now.strftime("%Y%m%d") + "/"
timestamp = str(int(time.time() * 1000))
description_list = []
description_list.append(description)
model = MusicGen.get_pretrained('small')
model.set_generation_params(duration=duration) # generate 'duration' seconds.
wav = model.generate(description_list) # generates samples based on descriptions
for one_wav in wav:
# 产出的音乐文件存储于../data/music_gen/{YYYYMMDD}/{timestamp}.wav中
audio_write(os.path.join(output_dir+today, timestamp), one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
torch.cuda.empty_cache()
except Exception as ee:
logging.error(f"music generate failed, msg: {ee}, duration: {duration}, description: {description}")
return {"code": 400, "msg": str(ee)}
finally:
request_queue.get() # 处理完成后从队列中取出请求
logging.info(f"music generate success, duration: {duration}, description: {description}")
return {"code": 0, "msg": "Success", "data": {"path": os.path.abspath(output_dir) + today + timestamp + ".wav"}}
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。