平台:LeetCode
题号:799
我们把玻璃杯摆成金字塔的形状,其中 第一层 有 1
个玻璃杯, 第二层 有 2
个,依次类推到第 100
层,每个玻璃杯 (250ml
) 将盛有香槟。
从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)
例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟,如下图所示。
现在当倾倒了非负整数杯香槟后,返回第 i 行 j 个玻璃杯所盛放的香槟占玻璃杯容积的比例( i 和 j 都从0开始)。
示例 1:
输入: poured(倾倒香槟总杯数) = 1, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.00000
解释: 我们在顶层(下标是(0,0))倒了一杯香槟后,没有溢出,因此所有在顶层以下的玻璃杯都是空的。
示例 2:
输入: poured(倾倒香槟总杯数) = 2, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.50000
解释: 我们在顶层(下标是(0,0)倒了两杯香槟后,有一杯量的香槟将从顶层溢出,位于(1,0)的玻璃杯和(1,1)的玻璃杯平分了这一杯香槟,所以每个玻璃杯有一半的香槟。
示例 3:
输入: poured = 100000009, query_row = 33, query_glass = 17
输出: 1.00000
提示:
为了方便,我们令 poured
为 k
,query_row
和 query_glass
分别为
和
。
定义
为第
行第
列杯子所经过的水的流量(而不是最终剩余的水量)。
起始我们有
,最终答案为
。
不失一般性考虑
能够更新哪些状态:显然当
不足
的时候,不会有水从杯子里溢出,即
将不能更新其他状态;当
大于
时,将会有
的水会等量留到下一行的杯子里,所流向的杯子分别是「第
行第
列的杯子」和「第
行第
列的杯子」,增加流量均为
,即有
和
。
Java 代码:
class Solution {
public double champagneTower(int k, int n, int m) {
double[][] f = new double[n + 10][n + 10];
f[0][0] = k;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= i; j++) {
if (f[i][j] <= 1) continue;
f[i + 1][j] += (f[i][j] - 1) / 2;
f[i + 1][j + 1] += (f[i][j] - 1) / 2;
}
}
return Math.min(f[n][m], 1);
}
}
C++ 代码:
class Solution {
public:
double champagneTower(int k, int n, int m) {
vector<vector<double>> f(n + 10, vector<double>(n + 10, 0.0));
f[0][0] = k;
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= i; ++j) {
if (f[i][j] <= 1) continue;
f[i + 1][j] += (f[i][j] - 1.0) / 2.0;
f[i + 1][j + 1] += (f[i][j] - 1.0) / 2.0;
}
}
return min(f[n][m], 1.0);
}
};
Python3 代码:
class Solution:
def champagneTower(self, k: int, n: int, m: int) -> float:
f = [[0] * (n + 10) for _ in range(n + 10)]
f[0][0] = k
for i in range(n + 1):
for j in range(i + 1):
if f[i][j] <= 1:
continue
f[i + 1][j] += (f[i][j] - 1) / 2
f[i + 1][j + 1] += (f[i][j] - 1) / 2
return min(f[n][m], 1)
TypeScript 代码:
function champagneTower(k: number, n: number, m: number): number {
const f = new Array<Array<number>>()
for (let i = 0; i < n + 10; i++) f.push(new Array<number>(n + 10).fill(0))
f[0][0] = k
for (let i = 0; i <= n; i++) {
for (let j = 0; j <= i; j++) {
if (f[i][j] <= 1) continue
f[i + 1][j] += (f[i][j] - 1) / 2
f[i + 1][j + 1] += (f[i][j] - 1) / 2
}
}
return Math.min(f[n][m], 1)
}