里程计,作为激光雷达导航、定位与地图构建的核心基石,通过连续追踪与匹配激光点云数据,精准估算车辆的运动轨迹。这一过程不仅深刻体现了机器人学领域的智慧结晶,更与测绘学中的点云拼接技术遥相呼应,尽管两者目标各异——前者旨在通过跨时空的点云对齐,揭示车辆姿态的微妙变迁;后者则聚焦于构建统一坐标系下的点云图景。
随着激光雷达随车辆穿梭,静态路标在雷达坐标系中的映射随之舞动,而正是这些动态变化的捕捉与解析,构成了激光里程计算法的核心逻辑。以特定时间窗内的运动求解为例,通过对比不同时刻同一路标在雷达坐标系下的位置变迁,反推雷达乃至车辆的移动轨迹,这一过程巧妙融合了空间旋转与平移的几何变换,最终汇聚成车辆运动轨迹的连续画卷。进一步地,基于海量路标点的数据支撑,我们得以构建一系列非线性方程,借助高效算法如非线性最小二乘法,精确求解出车辆在每个时间节点的位姿变化。这一过程循环往复,直至覆盖整个行驶周期,结合激光雷达的外部参数校准,最终绘制出车辆在真实智能驾驶场景下的精确轨迹图。在智能驾驶的广阔舞台上,点云扫描匹配技术已绽放出多样风采。依据不同的匹配策略与算法设计,该技术可细分为四大流派:原始点云直接配准、特征点引导的扫描匹配、基于点云分布特性的匹配方法,以及前沿的深度学习驱动方案。每种方法各有千秋,共同推动着智能驾驶技术的不断前行。 基于特征点匹配的LOAM算法 聚焦于LOAM算法——这一由卡内基·梅隆大学的杰出学者Andrew J. Davison与Sanjiv Singh在2014年精心打造的激光里程计与建图杰作。LOAM在KITTI数据集上的卓越表现,彰显了其非凡的实力。该算法巧妙地从点云数据中提炼出标志性的角点和平面点,.
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。