我使用以下方法来计算我的数据集的相关性:
cor( var1, var2, method = "method")
但我喜欢创建一个包含4个不同变量的相关矩阵。做这件事最简单的方法是什么?
发布于 2011-03-27 00:50:21
在数据帧上使用相同的函数(cor
),例如:
> cor(VADeaths)
Rural Male Rural Female Urban Male Urban Female
Rural Male 1.0000000 0.9979869 0.9841907 0.9934646
Rural Female 0.9979869 1.0000000 0.9739053 0.9867310
Urban Male 0.9841907 0.9739053 1.0000000 0.9918262
Urban Female 0.9934646 0.9867310 0.9918262 1.0000000
或者,在也包含离散变量(有时也称为因子)的数据框上,尝试如下所示:
> cor(mtcars[,unlist(lapply(mtcars, is.numeric))])
mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958 -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953 -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870 -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059 -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
发布于 2016-07-29 13:17:27
如果您想要将矩阵与一些可视化相结合,我可以推荐(我正在使用内置的iris
数据集):
library(psych)
pairs.panels(iris[1:4]) # select columns 1-4
Performance Analytics基本上做了同样的事情,但默认情况下包括重要性指标。
library(PerformanceAnalytics)
chart.Correlation(iris[1:4])
或者这个漂亮而简单的可视化:
library(corrplot)
x <- cor(iris[1:4])
corrplot(x, type="upper", order="hclust")
发布于 2011-03-27 01:27:01
参见psych
包中的corr.test
函数:
> corr.test(mtcars[1:4])
Call:corr.test(x = mtcars[1:4])
Correlation matrix
mpg cyl disp hp
mpg 1.00 -0.85 -0.85 -0.78
cyl -0.85 1.00 0.90 0.83
disp -0.85 0.90 1.00 0.79
hp -0.78 0.83 0.79 1.00
Sample Size
mpg cyl disp hp
mpg 32 32 32 32
cyl 32 32 32 32
disp 32 32 32 32
hp 32 32 32 32
Probability value
mpg cyl disp hp
mpg 0 0 0 0
cyl 0 0 0 0
disp 0 0 0 0
hp 0 0 0 0
又一次无耻的自我宣传:https://gist.github.com/887249
https://stackoverflow.com/questions/5446426
复制相似问题