我一直在使用Romel的alpha_vantage包,但也想直接从python (提供更大的功能)中使用alpha_vantage来处理包请求,如本文所述。
import requests
import alpha_vantage
API_URL = "https://www.alphavantage.co/query"
data = {
"function": "TIME_SERIES_DAILY",
"symbol": "NIFTY",
"outputsize": "compact",
"datatype": "csv"
"apikey": "XXX",
}
response = requests.get(API_URL, data)
print(response.json())[/code]
但是,在返回的dict中,我得到了以下错误消息:
{“错误消息”:“无效的API调用。请重试或访问TIME_SERIES_DAILY文档(TIME_SERIES_DAILY)。”}
对于requests.post(),其结果是:
response = requests.post(API_URL, data)
{'detail': 'Method "POST" not allowed.'}
我重新检查了文档,并跟踪了所有所需的API参数。感谢一些帮助,这是我在这里可能缺少的,以及正确的调用将是什么和/或任何其他替代方法。谢谢
发布于 2018-05-03 21:00:40
提示在错误中。将请求的方法从post
更改为get
response = requests.get(API_URL, params=data)
并使用作为Alpha Vantage数据存在的滴答符号。NIFTY
不是一只股票,而是一种指数。如果您使用MSFT
尝试您的代码,它将工作。
发布于 2019-12-03 16:05:03
这就是我如何在不使用任何包装的情况下从Alpha Vantage获得每日股票时间序列的方法。收到后,我将数据转换成一个熊猫数据框架,以供进一步处理。
import requests
import pandas as pd
API_URL = "https://www.alphavantage.co/query"
symbol = 'SMBL'
data = { "function": "TIME_SERIES_DAILY",
"symbol": symbol,
"outputsize" : "full",
"datatype": "json",
"apikey": "your_api_key" }
response = requests.get(API_URL, data)
response_json = response.json() # maybe redundant
data = pd.DataFrame.from_dict(response_json['Time Series (Daily)'], orient= 'index').sort_index(axis=1)
data = data.rename(columns={ '1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. adjusted close': 'AdjClose', '6. volume': 'Volume'})
data = data[[ 'Open', 'High', 'Low', 'Close', 'AdjClose', 'Volume']]
data.tail() # check OK or not
发布于 2018-07-27 16:13:55
import requests
import alpha_vantage
import json
API_URL = "https://www.alphavantage.co/query"
symbols = ['QCOM',"INTC","PDD"]
for symbol in symbols:
data = { "function": "TIME_SERIES_INTRADAY",
"symbol": symbol,
"interval" : "60min",
"datatype": "json",
"apikey": "XXX" }
response = requests.get(API_URL, data)
data = response.json()
print(symbol)
a = (data['Time Series (60min)'])
keys = (a.keys())
for key in keys:
print(a[key]['2. high'] + " " + a[key]['5. volume'])
https://stackoverflow.com/questions/48071949
复制相似问题