在回顾有关多维输入和堆叠的LSTM的许多类似问题时,我没有找到一个示例,它为initial_state
占位符列出了维数,并遵循了下面的rnn_tuple_state
。尝试的[lstm_num_layers, 2, None, lstm_num_cells, 2]
是来自这些示例(http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/、https://medium.com/@erikhallstrm/using-the-tensorflow-multilayered-lstm-api-f6e7da7bbe40)的代码的扩展,在特性的每个时间步骤中为多个值添加了一个额外的feature_dim
维度(这不起作用,而是由于tensorflow.nn.dynamic_rnn
调用中的维度不匹配而产生ValueError
)。
time_steps = 10
feature_dim = 2
label_dim = 4
lstm_num_layers = 3
lstm_num_cells = 100
dropout_rate = 0.8
# None is to allow for variable size batches
features = tensorflow.placeholder(tensorflow.float32,
[None, time_steps, feature_dim])
labels = tensorflow.placeholder(tensorflow.float32, [None, label_dim])
cell = tensorflow.contrib.rnn.MultiRNNCell(
[tensorflow.contrib.rnn.LayerNormBasicLSTMCell(
lstm_num_cells,
dropout_keep_prob = dropout_rate)] * lstm_num_layers,
state_is_tuple = True)
# not sure of the dimensionality for the initial state
initial_state = tensorflow.placeholder(
tensorflow.float32,
[lstm_num_layers, 2, None, lstm_num_cells, feature_dim])
# which impacts these two lines as well
state_per_layer_list = tensorflow.unstack(initial_state, axis = 0)
rnn_tuple_state = tuple(
[tensorflow.contrib.rnn.LSTMStateTuple(
state_per_layer_list[i][0],
state_per_layer_list[i][1]) for i in range(lstm_num_layers)])
# also not sure if expanding the feature dimensions is correct here
outputs, state = tensorflow.nn.dynamic_rnn(
cell, tensorflow.expand_dims(features, -1),
initial_state = rnn_tuple_state)
最有帮助的是对一般情况的解释:
所以这个伪码版本应该是:
# B, S, N, and R are undefined values for the purpose of this question
features = tensorflow.placeholder(tensorflow.float32, [B, S, N])
labels = tensorflow.placeholder(tensorflow.float32, [B, R])
...
如果我能完成的话,我一开始就不会问这里了。提前谢谢。欢迎对相关最佳做法提出任何意见。
发布于 2018-07-17 07:52:01
经过多次尝试和错误之后,以下内容将产生一个堆叠的LSTM dynamic_rnn
,而不考虑特性的维度性:
time_steps = 10
feature_dim = 2
label_dim = 4
lstm_num_layers = 3
lstm_num_cells = 100
dropout_rate = 0.8
learning_rate = 0.001
features = tensorflow.placeholder(
tensorflow.float32, [None, time_steps, feature_dim])
labels = tensorflow.placeholder(
tensorflow.float32, [None, label_dim])
cell_list = []
for _ in range(lstm_num_layers):
cell_list.append(
tensorflow.contrib.rnn.LayerNormBasicLSTMCell(lstm_num_cells,
dropout_keep_prob=dropout_rate))
cell = tensorflow.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True)
initial_state = tensorflow.placeholder(
tensorflow.float32, [lstm_num_layers, 2, None, lstm_num_cells])
state_per_layer_list = tensorflow.unstack(initial_state, axis=0)
rnn_tuple_state = tuple(
[tensorflow.contrib.rnn.LSTMStateTuple(
state_per_layer_list[i][0],
state_per_layer_list[i][1]) for i in range(lstm_num_layers)])
state_series, last_state = tensorflow.nn.dynamic_rnn(
cell=cell, inputs=features, initial_state=rnn_tuple_state)
hidden_layer_output = tensorflow.transpose(state_series, [1, 0, 2])
last_output = tensorflow.gather(hidden_layer_output, int(
hidden_layer_output.get_shape()[0]) - 1)
weights = tensorflow.Variable(tensorflow.random_normal(
[lstm_num_cells, int(labels.get_shape()[1])]))
biases = tensorflow.Variable(tensorflow.constant(
0.0, shape=[labels.get_shape()[1]]))
predictions = tensorflow.matmul(last_output, weights) + biases
mean_squared_error = tensorflow.reduce_mean(
tensorflow.square(predictions - labels))
minimize_error = tensorflow.train.RMSPropOptimizer(
learning_rate).minimize(mean_squared_error)
在这个过程中,有一个兔子洞是从前面引用的例子中开始的,这些例子重塑了输出,以容纳分类器,而不是回归器(这正是我试图构建的)。由于这与特征维度无关,所以它作为此用例的通用模板。
https://stackoverflow.com/questions/51254577
复制相似问题