腾讯云
开发者社区
文档
建议反馈
控制台
登录/注册
首页
学习
活动
专区
工具
TVP
腾讯云架构师技术同盟
文章/答案/技术大牛
搜索
搜索
关闭
发布
首页
学习
活动
专区
工具
TVP
腾讯云架构师技术同盟
返回腾讯云官网
彩铅的随笔博客
专栏成员
举报
56
文章
47177
阅读量
12
订阅数
订阅专栏
申请加入专栏
全部文章(56)
编程算法(17)
算法(13)
函数(12)
强化学习(11)
数据(9)
对象存储(8)
网络(6)
模型(5)
神经网络(4)
优化(4)
c++(2)
hexo(2)
algorithm(2)
基础(2)
机器学习(1)
css(1)
html(1)
深度学习(1)
腾讯云测试服务(1)
渲染(1)
serverless(1)
存储(1)
游戏(1)
监督学习(1)
二叉树(1)
uml(1)
数据结构(1)
actor(1)
difference(1)
dynamic(1)
gradient(1)
lambda(1)
self(1)
state(1)
xor(1)
地图(1)
动态规划(1)
队列(1)
二进制(1)
集合(1)
框架(1)
事件(1)
搜索(1)
索引(1)
性能(1)
搜索文章
搜索
搜索
关闭
变分推断 Variational Inference
lambda
模型
事件
数据
优化
贝叶斯推断(Bayesian Inference) ,在贝叶斯推断中我们有观测数据
一只野生彩色铅笔
2023-04-27
619
0
Hands on Reinforcement Learning Frontier Chapter
强化学习
self
模型
数据
算法
虽然强化学习不需要有监督学习中的标签数据,但它十分依赖奖励函数的设置。有时在奖励函数上做一些微小的改动,训练出来的策略就会有天差地别。在很多现实场景中,奖励函数并未给定,或者奖励信号极其稀疏,此时随机设计奖励函数将无法保证强化学习训练出来的策略满足实际需要。例如,对于无人驾驶车辆智能体的规控,其观测是当前的环境感知恢复的 3D 局部环境,动作是车辆接下来数秒的具体路径规划,那么奖励是什么?如果只是规定正常行驶而不发生碰撞的奖励为+1,发生碰撞为-100,那么智能体学习的结果则很可能是找个地方停滞不前。具体能帮助无人驾驶小车规控的奖励函数往往需要专家的精心设计和调试。
一只野生彩色铅笔
2023-04-27
664
0
Hands on Reinforcement Learning Advanced Chapter
神经网络
强化学习
函数
算法
网络
在第 5 章讲解的 Q-learning 算法中,我们以矩阵的方式建立了一张存储每个状态下所有动作值的表格。表格中的每一个动作价值Q(s,a)Q(s,a)Q(s,a)表示在状态sss下选择动作aaa然后继续遵循某一策略预期能够得到的期望回报。然而,这种用表格存储动作价值的做法只在环境的状态和动作都是离散的,并且空间都比较小的情况下适用,我们之前进行代码实战的几个环境都是如此(如悬崖漫步)。当状态或者动作数量非常大的时候,这种做法就不适用了。例如,当状态是一张 RGB 图像时,假设图像大小是210×160×3210\times 160\times 3210×160×3,此时一共有256(210×160×3)256^{(210\times 160\times 3)}256(210×160×3)种状态,在计算机中存储这个数量级的QQQ值表格是不现实的。更甚者,当状态或者动作连续的时候,就有无限个状态动作对,我们更加无法使用这种表格形式来记录各个状态动作对的QQQ值。
一只野生彩色铅笔
2023-04-24
672
0
Hands on Reinforcement Learning 15 Imitation Learning
强化学习
函数
模型
数据
网络
虽然强化学习不需要有监督学习中的标签数据,但它十分依赖奖励函数的设置。有时在奖励函数上做一些微小的改动,训练出来的策略就会有天差地别。在很多现实场景中,奖励函数并未给定,或者奖励信号极其稀疏,此时随机设计奖励函数将无法保证强化学习训练出来的策略满足实际需要。例如,对于无人驾驶车辆智能体的规控,其观测是当前的环境感知恢复的 3D 局部环境,动作是车辆接下来数秒的具体路径规划,那么奖励是什么?如果只是规定正常行驶而不发生碰撞的奖励为+1,发生碰撞为-100,那么智能体学习的结果则很可能是找个地方停滞不前。具体能帮助无人驾驶小车规控的奖励函数往往需要专家的精心设计和调试。
一只野生彩色铅笔
2023-04-24
390
0
Hands on Reinforcement Learning 12 Proximal Policy Optimization
强化学习
数据
算法
网络
优化
第 11 章介绍的 TRPO 算法在很多场景上的应用都很成功,但是我们也发现它的计算过程非常复杂,每一步更新的运算量非常大。于是,TRPO 算法的改进版——PPO 算法在 2017 年被提出,PPO 基于 TRPO 的思想,但是其算法实现更加简单。并且大量的实验结果表明,与 TRPO 相比,PPO 能学习得一样好(甚至更快),这使得 PPO 成为非常流行的强化学习算法。如果我们想要尝试在一个新的环境中使用强化学习算法,那么 PPO 就属于可以首先尝试的算法。
一只野生彩色铅笔
2023-04-12
568
0
Hands on Reinforcement Learning 11 Trust Region Policy Optimization
函数
数据
算法
性能
优化
本书之前介绍的基于策略的方法包括策略梯度算法和 Actor-Critic 算法。这些方法虽然简单、直观,但在实际应用过程中会遇到训练不稳定的情况。回顾一下基于策略的方法:参数化智能体的策略,并设计衡量策略好坏的目标函数,通过梯度上升的方法来最大化这个目标函数,使得策略最优。具体来说,假设
一只野生彩色铅笔
2023-04-09
395
0
Hands on Reinforcement Learning 10 Actor-Critic Algorithm
actor
algorithm
函数
算法
网络
本书之前的章节讲解了基于值函数的方法(DQN)和基于策略的方法(REINFORCE),其中基于值函数的方法只学习一个价值函数,而基于策略的方法只学习一个策略函数。那么,一个很自然的问题是,有没有什么方法既学习价值函数,又学习策略函数呢?答案就是 Actor-Critic。Actor-Critic 是囊括一系列算法的整体架构,目前很多高效的前沿算法都属于 Actor-Critic 算法,本章接下来将会介绍一种最简单的 Actor-Critic 算法。需要明确的是,Actor-Critic 算法本质上是基于策略的算法,因为这一系列算法的目标都是优化一个带参数的策略,只是会额外学习价值函数,从而帮助策略函数更好地学习。
一只野生彩色铅笔
2023-04-09
614
0
Hands on Reinforcement Learning 09 Policy Gradient Algorithm
强化学习
algorithm
gradient
函数
算法
本书之前介绍的 Q-learning、DQN 及 DQN 改进算法都是基于价值(value-based)的方法,其中 Q-learning 是处理有限状态的算法,而 DQN 可以用来解决连续状态的问题。在强化学习中,除了基于值函数的方法,还有一支非常经典的方法,那就是基于策略(policy-based)的方法。对比两者,基于值函数的方法主要是学习值函数,然后根据值函数导出一个策略,学习过程中并不存在一个显式的策略;而基于策略的方法则是直接显式地学习一个目标策略。策略梯度是基于策略的方法的基础,本章从策略梯度算法说起。
一只野生彩色铅笔
2023-04-09
426
0
Hands on Reinforcement Learning 08 Deep Q Network Advanced
神经网络
强化学习
函数
算法
网络
DQN 算法敲开了深度强化学习的大门,但是作为先驱性的工作,其本身存在着一些问题以及一些可以改进的地方。于是,在 DQN 之后,学术界涌现出了非常多的改进算法。本章将介绍其中两个非常著名的算法:Double DQN 和 Dueling DQN,这两个算法的实现非常简单,只需要在 DQN 的基础上稍加修改,它们能在一定程度上改善 DQN 的效果。如果读者想要了解更多、更详细的 DQN 改进方法,可以阅读 Rainbow 模型的论文及其引用文献。
一只野生彩色铅笔
2023-04-08
676
0
Hands on Reinforcement Learning 07 Deep Q Network
神经网络
函数
数据
算法
网络
在第 5 章讲解的 Q-learning 算法中,我们以矩阵的方式建立了一张存储每个状态下所有动作值的表格。表格中的每一个动作价值
一只野生彩色铅笔
2023-04-07
705
0
Hands on Reinforcement Learning Basic Chapter
强化学习
函数
模型
数据
算法
亲爱的读者,欢迎来到强化学习的世界。初探强化学习,你是否充满了好奇和期待呢?我们想说,首先感谢你的选择,学习本书不仅能够帮助你理解强化学习的算法原理,提高代码实践能力,更能让你了解自己是否喜欢决策智能这个方向,从而更好地决策未来是否从事人工智能方面的研究和实践工作。人生中充满选择,每次选择就是一次决策,我们正是从一次次决策中,把自己带领到人生的下一段旅程中。在回忆往事时,我们会对生命中某些时刻的决策印象深刻:“还好我当时选择了读博,我在那几年找到了自己的兴趣所在,现在我能做自己喜欢的工作!”“唉,当初我要是去那家公司实习就好了,在那里做的技术研究现在带来了巨大的社会价值。”通过这些反思,我们或许能领悟一些道理,变得更加睿智和成熟,以更积极的精神来迎接未来的选择和成长。
一只野生彩色铅笔
2023-04-07
905
0
Hands on Reinforcement Learning 05 Temporal Difference
强化学习
difference
函数
数据
算法
第 4 章介绍的动态规划算法要求马尔可夫决策过程是已知的,即要求与智能体交互的环境是完全已知的(例如迷宫或者给定规则的网格世界)。在此条件下,智能体其实并不需要和环境真正交互来采样数据,直接用动态规划算法就可以解出最优价值或策略。这就好比对于有监督学习任务,如果直接显式给出了数据的分布公式,那么也可以通过在期望层面上直接最小化模型的泛化误差来更新模型参数,并不需要采样任何数据点。
一只野生彩色铅笔
2023-04-06
644
0
Hands on Reinforcement Learning 04 Dynamic programming
dynamic
动态规划
函数
算法
索引
动态规划(dynamic programming)是程序设计算法中非常重要的内容,能够高效解决一些经典问题,例如背包问题和最短路径规划。动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到目标问题的解。动态规划会保存已解决的子问题的答案,在求解目标问题的过程中,需要这些子问题答案时就可以直接利用,避免重复计算。本章介绍如何用动态规划的思想来求解在马尔可夫决策过程中的最优策略。
一只野生彩色铅笔
2023-04-06
376
0
Hands on Reinforcement Learning 03
强化学习
函数
基础
集合
算法
马尔可夫决策过程(Markov decision process,MDP)是强化学习的重要概念。要学好强化学习,我们首先要掌握马尔可夫决策过程的基础知识。前两章所说的强化学习中的环境一般就是一个马尔可夫决策过程。与多臂老虎机问题不同,马尔可夫决策过程包含状态信息以及状态之间的转移机制。如果要用强化学习去解决一个实际问题,第一步要做的事情就是把这个实际问题抽象为一个马尔可夫决策过程,也就是明确马尔可夫决策过程的各个组成要素。本章将从马尔可夫过程出发,一步一步地进行介绍,最后引出马尔可夫决策过程。
一只野生彩色铅笔
2023-04-04
356
0
Hands on Reinforcement Learning 02
强化学习
函数
基础
框架
算法
我们在第 1 章中了解到,强化学习关注智能体和环境交互过程中的学习,这是一种试错型学习(trial-and-error learning)范式。在正式学习强化学习之前,我们需要先了解多臂老虎机问题,它可以被看作简化版的强化学习问题。与强化学习不同,多臂老虎机不存在状态信息,只有动作和奖励,算是最简单的“和环境交互中的学习”的一种形式。多臂老虎机中的探索与利用(exploration vs. exploitation)问题一直以来都是一个特别经典的问题,理解它能够帮助我们学习强化学习。
一只野生彩色铅笔
2023-04-04
538
0
Hands on Reinforcement Learning 01
强化学习
监督学习
模型
数据
优化
亲爱的读者,欢迎来到强化学习的世界。初探强化学习,你是否充满了好奇和期待呢?我们想说,首先感谢你的选择,学习本书不仅能够帮助你理解强化学习的算法原理,提高代码实践能力,更能让你了解自己是否喜欢决策智能这个方向,从而更好地决策未来是否从事人工智能方面的研究和实践工作。人生中充满选择,每次选择就是一次决策,我们正是从一次次决策中,把自己带领到人生的下一段旅程中。在回忆往事时,我们会对生命中某些时刻的决策印象深刻:“还好我当时选择了读博,我在那几年找到了自己的兴趣所在,现在我能做自己喜欢的工作!”“唉,当初我要是去那家公司实习就好了,在那里做的技术研究现在带来了巨大的社会价值。”通过这些反思,我们或许能领悟一些道理,变得更加睿智和成熟,以更积极的精神来迎接未来的选择和成长。
一只野生彩色铅笔
2023-04-04
397
0
《算法竞赛进阶指南》0x27 A-star
state
队列
在先前提到的优先队列BFS方法中,是每轮从堆中取出的 “当前代价最小” 的状态进行扩展,这样每个状态第一次从堆中取出时,就得到了从初始状态到该状态的最小代价
一只野生彩色铅笔
2022-10-31
430
0
《算法竞赛进阶指南》0x26 广度变形
在一般的广度优先搜索中,每次沿分支扩展“一步”,逐层搜索,已求解起始状态到每个状态的最小步数
一只野生彩色铅笔
2022-10-31
502
0
《算法竞赛进阶指南》0x25 广度优先搜索
uml
在广度优先搜索的过程中,我们不断从队头取出状态,对于该状态面临的所有分支,把沿着每条分支到达的下一个状态(如果未访问过或者能够被更新成更优的解)插入队尾
一只野生彩色铅笔
2022-10-31
651
0
《算法竞赛进阶指南》0x24 迭代加深
编程算法
这种策略带有一定的缺陷:如果搜索树每个节点的分支数目非常多,且问题的答案在某个较浅的结点上,如果深搜在一开始选错了分支,就可能在不包含答案的深层次树上浪费许多时间
一只野生彩色铅笔
2022-10-31
804
0
点击加载更多
社区活动
Python精品学习库
代码在线跑,知识轻松学
立即查看
博客搬家 | 分享价值百万资源包
自行/邀约他人一键搬运博客,速成社区影响力并领取好礼
立即体验
技术创作特训营·精选知识专栏
往期视频·干货材料·成员作品 最新动态
立即查看
领券
问题归档
专栏文章
快讯文章归档
关键词归档
开发者手册归档
开发者手册 Section 归档