腾讯云
开发者社区
文档
建议反馈
控制台
登录/注册
首页
学习
活动
专区
工具
TVP
腾讯云架构师技术同盟
文章/答案/技术大牛
搜索
搜索
关闭
发布
首页
学习
活动
专区
工具
TVP
腾讯云架构师技术同盟
返回腾讯云官网
燧机科技-视频AI智能分析
视频监控图像识别预警、算法定制、边缘智能分析盒
专栏成员
举报
500
文章
315747
阅读量
28
订阅数
订阅专栏
申请加入专栏
全部文章(500)
深度学习(246)
机器学习(192)
图像处理(174)
人工智能(164)
图像识别(131)
神经网络(93)
编程算法(79)
python(52)
c++(40)
opencv(39)
安全(18)
numpy(16)
api(12)
视频分析(12)
网站(8)
智能识别(6)
实时监控(3)
backbone(3)
focus(3)
yolo(3)
系统(3)
tensorflow(2)
自动化(2)
卷积神经网络(2)
gpu(2)
计算机视觉(2)
模型(2)
费用中心(1)
人脸识别(1)
自动驾驶(1)
打包(1)
出行(1)
智慧市政(1)
无人驾驶(1)
pytorch(1)
大数据(1)
图像分析(1)
智慧景区(1)
未来社区(1)
grid(1)
layer(1)
mask(1)
merge(1)
shuffle(1)
transition(1)
对象(1)
函数(1)
架构(1)
开发(1)
设计(1)
手机(1)
数组(1)
算法(1)
优化(1)
搜索文章
搜索
搜索
关闭
校园霸凌行为监测AI预警系统YOLOv8/v7/v6/v5
人工智能
图像识别
校园霸凌行为监测AI预警算法基于YOLO系列视觉智能分析算法,对于校园霸凌行为监测AI预警系统目标检测算法而言,我们通常可以将校园霸凌行为监测AI预警系统划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,在本博客中,介绍了基于YOLOv8/v7/v6/v5的暴力行为检测系统。采用YOLOv8作为主要算法,并整合了YOLOv7、YOLOv6、YOLOv5等先进算法进行性能指标的对比分析。本文详细介绍了国内外的研究现状、数据集处理方法、算法原理、模型构建与训练的代码实现,以及基于Streamlit的交互式Web应用界面设计。
燧机科技
2024-11-27
180
1
渣土车识别监测 渣土车未盖篷布识别抓拍算法
人工智能
渣土车识别监测 渣土车未盖篷布识别抓拍算法通过yolov7深度学习训练模型框架,渣土车识别监测 渣土车未盖篷布识别抓拍算法在指定区域内实时监测渣土车的进出状况以及对渣土车未盖篷布违规的抓拍和预警。渣土车识别监测 渣土车未盖篷布识别抓拍算法的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,渣土车识别监测 渣土车未盖篷布识别抓拍算法每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
燧机科技
2023-09-24
441
0
泥石流山体滑坡监控视觉识别检测
人工智能
泥石流山体滑坡监控视觉识别检测算法通过yolov8+python深度学习框架模型,泥石流山体滑坡监控视觉识别检测算法识别到泥石流及山体滑坡灾害事件的发生,算法会立即进行图像抓拍,并及时进行预警。泥石流山体滑坡监控视觉识别检测算法Yolo的源码是用C实现的,但是好在Github上有很多开源的TF复现。这里我们参考gliese581gg的实现来分析Yolo的Inference实现细节。泥石流山体滑坡监控视觉识别检测算法代码将构建一个end-to-end的Yolo的预测模型,泥石流山体滑坡监控视觉识别检测算法利用的已经训练好的权重文件,你将可以用自然的图片去测试检测效果。泥石流山体滑坡监控视觉识别检测算法采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数:max(x,0.1x)max(x,0.1x)。但是最后一层却采用线性激活函数。
燧机科技
2023-09-24
705
0
工服穿戴检测联动门禁开关算法
人工智能
工服穿戴检测联动门禁开关算法通过yolov8深度学习框架模型,工服穿戴检测联动门禁开关算法能够准确识别和检测作业人员是否按照规定进行工服着装,只有当人员合规着装时,工服穿戴检测联动门禁开关算法会发送开关量信号给门禁设备,使门禁自动打开。工服穿戴检测联动门禁开关算法YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,工服穿戴检测联动门禁开关算法的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。根据YOLO的设计,输入图像被划分为 7x7 的网格(grid),输出张量中的 7x7 就对应着输入图像的 7x7 网格。或者我们把工服穿戴检测联动门禁开关算法 7x7x30 的张量看作 7x7=49个30维的向量,也就是输入图像中的每个网格对应输出一个30维的向量。如下图所示,比如输入图像左上角的网格对应到输出张量中左上角的向量。
燧机科技
2023-09-24
357
0
AI工人操作行为流程规范识别算法
人工智能
AI工人操作行为流程规范识别算法通过yolov7+python网络模型框架,AI工人操作行为流程规范识别算法对作业人员的操作行为进行实时分析,根据设定算法规则判断操作行为是否符合作业标准规定的SOP流程。AI工人操作行为流程规范识别算法并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。AI工人操作行为流程规范识别算法模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。
燧机科技
2023-09-24
536
1
裸露土方智能识别算法
人工智能
裸露土方智能识别算法通过opencv+python网络模型框架算法,裸露土方智能识别算法能够准确识别现场土堆的裸露情况,并对超过40%部分裸露的土堆进行抓拍预警。裸露土方智能识别算法用到的Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使裸露土方智能识别算法可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,裸露土方智能识别算法代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在裸露土方智能识别算法中编写代码比使用C / C++更容易。
燧机科技
2023-09-24
215
0
传送带下料口堵塞识别检测算法
人工智能
传送带下料口堵塞识别检测算法通过python基于yolov5网络深度学习框架模型,下料口堵塞识别检测算法能够准确判断下料口是否出现堵塞现象,一旦发现下料口堵塞,算法会立即抓拍发出告警信号。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。传送带下料口堵塞识别检测算法使程序员能够用更少的代码行表达思想,而不会降低可读性。
燧机科技
2023-09-23
319
0
AI图像行为分析算法
人工智能
AI图像行为分析算法通过python+opencv深度学习框架对现场操作行为进行全程实时分析,AI图像行为分析算法通过人工智能视觉能够准确判断出现场人员的作业行为是否符合SOP流程规定,并对违规操作行为进行自动抓拍告警。OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,AI图像行为分析算法可以运行在Linux、Windows、Android和Mac OS操作系统上。 AI图像行为分析算法轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
燧机科技
2023-09-23
355
0
AI人员打闹监测识别算法
人工智能
AI人员打闹监测识别算法通过yolo+python网络模型框架算法, AI人员打闹监测识别算法能够准确判断出是否有人员进行打闹行为,算法会立即发出预警信号。Yolo算法,其全称是You Only Look Once: Unified, Real-Time Object Detection,其实个人觉得这个题目取得非常好,AI人员打闹监测识别算法基本上把Yolo算法的特点概括全了:You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,AI人员打闹监测识别算法提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。
燧机科技
2023-09-23
259
0
防溺水广播警示系统
人工智能
防溺水广播警示系统通过python+yolo系列网络框架模型算法,防溺水广播警示系统模型算法以识别和判断危险水域中是否有人员溺水的情况。一旦出现溺水现象,算法将立即发出警报信号,并自动启动广播系统进行警示。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使防溺水广播警示系统模型能够用更少的代码行表达思想,而不会降低可读性。
燧机科技
2023-09-23
321
0
城市内涝积水监测预警系统
人工智能
城市内涝积水监测预警系统通过yolov8网络深度学习框架,算法一旦识别到道路出现积水,城市内涝积水监测预警系统会立即发出预警信号。并及时通知相关人员。城市内涝积水监测预警系统检测速度非常快。标准版本的可以每秒处理 45 张图像;城市内涝积水监测预警系统的极速版本每秒可以处理150帧图像。这就意味着 可以以小于 25 毫秒延迟,实时地处理视频。对于欠实时系统,在准确率保证的情况下,YOLO速度快于其他方法。
燧机科技
2023-09-23
434
0
工厂人员作业行为动作识别检测算法
人工智能
工厂人员作业行为动作识别检测算法通过SVM+R-CNN深度学习算法框架模型,工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准,如果不符合则立即抓拍告警提醒。人员作业行为动作识别检测算法首先基于R-CNN进行人体检测,之后并对其进行追踪,并以相同的帧率生成MHI。之后,将所有边界框映射到由相同RGB图像序列生成的相应MHI,并在边界框中提取每个子MHI的HOG特征,最后使用SVM进行分类。
燧机科技
2023-09-22
938
0
煤矿监管电子封条算法
人工智能
煤矿监管电子封条算法基于yolov5网络模型深度学习框架,先进技术的创新举措,煤矿监管电子封条算法通过在现场运料运人井口、回风井口、车辆出入口等关键位置进行人员进出、人数变化和设备开停等情况的识别和分析。煤矿监管电子封条算法YOLO检测速度非常快。标准版本的可以每秒处理 45 张图像。这就意味着煤矿监管电子封条算法 YOLO 可以以小于 25 毫秒延迟,实时地处理视频。
燧机科技
2023-09-22
222
0
海面漂浮物垃圾识别检测算法
人工智能
海面漂浮物垃圾识别检测算法通过yolo系列网络框架模型算法,海面漂浮物垃圾识别检测算法一旦识别到海面的漂浮物垃圾,海面漂浮物垃圾识别检测算法立即发出预警信号。海面漂浮物垃圾识别检测算法目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别
燧机科技
2023-09-22
442
0
视频监控人员行为识别算法
人工智能
视频监控人员行为识别算法通过opencv+python网络模型框架算法,视频监控人员行为识别算法可以识别和判断员工的行为是否符合规范要求,一旦发现不符合规定的行为,视频监控人员行为识别算法将自动发送告警信息。
燧机科技
2023-09-22
800
0
AI人员打架识别算法
人工智能
AI打架识别算法基于Detection网络模型算法框架,AI打架识别算法识别校园打架斗殴行为,发现立即打架斗殴行为算法会立即抓拍告警推送打架事件信息。AI人员打架识别算法目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而AI人员打架识别算法直接从图片生成位置和类别。
燧机科技
2023-09-22
872
0
防溺水智能预警系统解决方案
人工智能
防溺水智能预警系统算法采用yolov7先进的AI视觉识别算法模型框架,防溺水智能预警系统算法实现对危险水域人员活动、水面情况等各项指标的监测和分析。当发现有人进入危险水域或出现紧急情况时,算法会立即发出预警信号。防溺水智能预警系统算法采用一个单独的CNN模型实现end-to-end的目标检测,首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。
燧机科技
2023-09-21
430
0
考生作弊行为分析算法
人工智能
考生作弊行为分析系统利用python+yolo系列网络模型算法框架,考生作弊行为分析算法利用图像处理和智能算法对考生的行为进行分析和识别,经过算法服务器的复杂计算和逻辑判断,算法将根据考生行为的特征和规律,判定是否存在作弊行为。考生作弊行为分析算法模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。
燧机科技
2023-09-21
360
0
金属矿山电子封条系统模型算法
人工智能
金属矿山电子封条系统模型算法通过python+yolov5网络模型框架算法,金属矿山电子封条系统模型算法识别到运输设备启动运行或者识别到运输设备运行工作状态下有煤、无煤转换,进行预警分析,金属矿山电子封条算法利用智能化视频识别等技术,实时监测分析矿井出入井人员、人数变化及非煤矿山生产作业状态等情况。金属矿山电子封条系统模型算法Yolo先使用ImageNet数据集对前20层卷积网络进行预训练,然后使用完整的网络,在PASCAL VOC数据集上进行对象识别和定位的训练。金属矿山电子封条系统模型算法的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。
燧机科技
2023-09-21
204
0
工服穿戴检测算法 工装穿戴识别算法
人工智能
工服穿戴检测算法 工装穿戴识别算法利用yolo网络模型图像识别技术,工服穿戴检测算法 工装穿戴识别算法可以准确地识别现场人员是否穿戴了正确的工装,包括工作服、安全帽等。一旦检测到未穿戴的情况,将立即发出警报并提示相关人员进行整改。工服穿戴检测算法 工装穿戴识别算法中Yolo框架模型意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。工服穿戴检测算法 工装穿戴识别算法模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。
燧机科技
2023-09-21
494
0
点击加载更多
社区活动
Python精品学习库
代码在线跑,知识轻松学
立即查看
博客搬家 | 分享价值百万资源包
自行/邀约他人一键搬运博客,速成社区影响力并领取好礼
立即体验
技术创作特训营·精选知识专栏
往期视频·干货材料·成员作品 最新动态
立即查看
领券
问题归档
专栏文章
快讯文章归档
关键词归档
开发者手册归档
开发者手册 Section 归档