spark从1.6开始引入,到现在2.4版本,pivot算子有了进一步增强,这使得后续无论是交给pandas继续做处理,还是交给R继续分析,都简化了不少。大家无论在使用pandas、numpy或是R的时候,首先会做的就是处理数据,尤其是将列表,转成成合适的形状。
昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。
数据透视表是一个很重要的数据统计操作,最有代表性的当属在Excel中实现(甚至说提及Excel,个人认为其最有用的当属三类:好用的数学函数、便捷的图表制作以及强大的数据透视表功能)。所以,今天本文就围绕数据透视表,介绍一下其在SQL、Pandas和Spark中的基本操作与使用,这也是沿承这一系列的文章之一。
早在 1993年,关系数据库之父 E.F.Codd[1] 提出了 OLAP 概念,不遗余力指出面向记录的OLTP关系型数据库从根本上不适合查询分析的需求。
PIVOT 通过将表达式中的一个列的唯一值转换为输出中的多列(即行转列),来轮替表值表达式。PIVOT 在需要对最终输出所需的所有剩余列值执行聚合时运行聚合。与 PIVOT 执行的操作相反,UNPIVOT 将表值表达式的列轮换为行(即列转行)。
这几天在做一个招标系统中审批模块,其中关于报价信息这块,用到了pivot和unpivot来实现数据的行列互转,下面简单介绍一下,实际案例,便于回忆和记录相关的条件下使用的情况。pivot 与 unpivot 函数是SQL2005新提供的2个函数,PIVOT 通过将表达式某一列中的唯一值转换为输出中的多个列来旋转表值表达式,并在必要时对最终输出中所需的任何其余列值执行聚合。UNPIVOT 与 PIVOT 执行相反的操作,将表值表达式的列转换为列值。 下面我通过PIVOT 来阐述整个函数的使用:
这几天在做一个招标系统中审批模块,其中关于报价信息这块,用到了pivot和unpivot来实现数据的行列互转,下面简单介绍一下,实际案例,便于回忆和记录相关的条件下使用的情况。pivot 与 unpivot 函数是SQL2005新提供的2个函数,PIVOT 通过将表达式某一列中的唯一值转换为输出中的多个列来旋转表值表达式,并在必要时对最终输出中所需的任何其余列值执行聚合。UNPIVOT 与 PIVOT 执行相反的操作,将表值表达式的列转换为列值。
熟悉spark sql的都知道,spark sql是从shark发展而来。Shark为了实现Hive兼容,在HQL方面重用了Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MR作业替换成了Spark作业(辅以内存列式存储等各种和Hive关系不大的优化);
欢迎阅读美图数据技术团队的「Spark,从入门到精通」系列文章,本系列文章将由浅入深为大家介绍 Spark,从框架入门到底层架构的实现,相信总有一种姿势适合你。
UNPIVOT运算符相对于PIVOT运算符,它执行与PIVOT相反的操作,即将列转换到行。需要注意的是UNPIVOT运算符并不完全是PIVOT的逆向操作。因为执行PIVOT将会执行一次聚合,从而将多个可能的行合并为输出中的单个行。而 UNPIVOT 无法重现原始表值表达式的结果,因为行已经被合并了。另外,UNPIVOT 的输入中的空值不会显示在输出中,而在执行 PIVOT 操作之前,输入中可能有原始的空值。
在第一部分中,我们讨论了APPLY和CTE这两个T-SQL Enhancement。APPLY实现了Table和TVF的Join,CTE通过创建“临时的View”的方式使问题化繁为简。现在我们接着来讨论另外两个重要的T-SQL Enhancement Items:PIVOT和Ranking。 三、 PIVOT Operator PIVOT的中文意思是“在枢轴上转动”,比如对于一个2维坐标,将横坐标变成纵坐标,将纵坐标变成横坐标。反映在一个Relational Table上的意思就是:变成为列,变列为行。
定义一个递归CTE,至少需要两个查询(或者更多),第一个查询称为定位点成员(anchor member),第二个查询称为递归成员(recursive member),基本格式如下:
这种比较老旧的配置一般都是可以轻松拿下的,所以也没在意,直接丢在sqlmap里面了,等了一会,我发现:在爆数据库,表,列的时候都很正常,但是到了最后获取最后的列中的数据的时候就发生了问题,获取到的值都是空的,如下
一、Hadoop 二、Hive 三、Spark 四、Kafka 五、HBase 六、Flink 七、数仓业务方面 八、算法
在几乎所有处理复杂数据的部门中,Spark很快已成为跨数据和分析生命周期的团队的事实上的分布式计算框架。 新的Adaptive Query Execution框架(AQE)是Spark 3.0最令人期待的功能之一,它可以解决困扰许多Spark SQL工作负载的问题。英特尔和百度混合团队在2018年初的博客中记录了这些内容。要更深入地了解框架,请学习我们更新的Apache Spark Performance Tuning课程。
查询是对存储在 SQL Server 中的数据的一种请求。可以使用下列几种形式发出查询:
本篇文章主要介绍Spark SQL/Hive中常用的函数,主要分为字符串函数、JSON函数、时间函数、开窗函数以及在编写Spark SQL代码应用时实用的函数算子五个模块。
PARTITION 是一种常见的快速排序算法,其目的是将数组分成两个部分,使得其中一个部分的所有元素都小于另一个部分的所有元素。在这个过程中,最小的元素会被放在数组的最后一个位置。
编辑手记:祝贺罗海雄老师加入Oracle ACE社区,他是数据库SQL开发和性能优化专家,也是ITPUB论坛的资深版主,我们整理了罗老师一篇AWR裸数据分析的文档,供大家学习参考
本文的思路是以从小到大为例讲的。 快速排序的基本思想是任取待排序序列的一个元素作为中心元素(可以用第一个,最后一个,也可以是中间任何一个),习惯将其称为pivot,枢轴元素; 将所有比枢轴元素小的放在其左边; 将所有比它大的放在其右边; 形成左右两个子表; 然后对左右两个子表再按照前面的算法进行排序,直到每个子表的元素只剩下一个。
Spark SQL里面有很多的参数,而且这些参数在Spark官网中没有明确的解释,可能是太多了吧,可以通过在spark-sql中使用set -v 命令显示当前spark-sql版本支持的参数。
普通的 map 算子对 RDD 中的每一个元素进行操作,而 mapPartitions 算子对 RDD 中每一个分区进行操作。
Spark SQL允许开发人员直接处理RDD,同时可以查询在Hive上存储的外部数据。Spark SQL的一个重要特点就是能够统一处理关系表和RDD,使得开发人员可以轻松的使用SQL命令进行外部查询,同时进行更加复杂的数据分析。
Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。是一个用来实现快速而同用的集群计算的平台。
不管是参加Kaggle比赛,还是开发一个深度学习应用,第一步总是数据分析,这篇文章介绍了8个使用Python进行数据分析的方法,不仅能够提升运行效率,还能够使代码更加“优美”。
Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。是一个用来实现快速而同用的集群计算的平台。 Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Scala函数式的编程思想,提供与Scala类似的编程接口 Sparkon Yarn
Pandas 的名字来源于“Panel Data”和“Python Data Analysis Library”的缩写。它最初由 Wes McKinney 开发,旨在提供高效、灵活的数据操作和分析工具。Pandas 在数据科学、统计分析、金融、经济学等领域得到了广泛应用。
厌倦了定义用不了几次的函数? Lambda表达式是你的救星! Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。 它能替你创建一个函数。
SparkSql是架构在Spark计算框架之上的分布式Sql引擎,使用DataFrame和DataSet承载结构化和半结构化数据来实现数据复杂查询处理,提供的DSL 可以直 接使用scala语言完成Sql查询,同时也使用thriftserver提供服务化的Sql查询功能。SparkSql提供了DataSource API,用户通过这套API可以自己开发一套Connector,直接查询各类数据源,数据源包括NoSql、RDBMS、搜索引擎以及HDFS等分布式文件系统上的文件等。
当今信息时代,数据堪称是最宝贵的资源。沿承系列文章,本文对SQL、Pandas和Spark这3个常用的数据处理工具进行对比,主要围绕数据查询的主要操作展开。
PIVOT,UNPIVOT运算符是SQL server 2005支持的新功能之一,主要用来实现行到列的转换。本文主要介绍PIVOT运算符的操作,以及如何实现动态PIVOT的行列转换。
在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示:
本文介绍了如何使用 Spark 进行大数据处理,首先介绍了 Spark 的基本概念和架构,然后通过一个简单的例子展示了如何使用 Spark 进行数据处理。最后,本文还介绍了 Spark 的部署方式,包括本地部署和集群部署。
在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基本的转化操作和行动操作。今天我们来看一下RDD当中非常常见的PairRDD,也叫做键值对RDD,可以理解成KVRDD。
今天给大家分享一篇内容,介绍了8个使用Python进行数据分析的方法,不仅能够提升运行效率,还能够使代码更加“优美”。
在 Apache 首次亚洲线上技术峰会 --ApacheCon Asia 大会上,网易数帆大数据专家,Apache Kyuubi PPMC,Apache Spark / Submarine Committer 燕青(Kent Yao)分享了 Apache Kyuubi 孵化器项目(注:下文中出现的 Apache Kyuubi/Kyuubi 等缩写均指代 Apache Kyuubi 孵化器项目)以及 Serverless Spark 在网易的实践和探索。Kyuubi 是网易数帆大数据团队开源的项目,在各位导师
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此在很多笔试面试中出现的几率很高。
在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。 另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。
spark sql谓词下推逻辑优化器PushDownPredicates包含了三个规则:
Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。在 NumPy 中数据结构是围绕 ndarray 展开的,那么在 Pandas 中的核心数据结构是什么呢?
可以看到,第一个参数是zeroValue,这个就是用来对原始的V做合并操作的,后面的参数是一个JFunction操作。
排序算法的衡量指标我这里不再重复,上一篇我已经列举分析的很清楚了,但是非常重要,没看到我上一篇的小伙伴墙裂推荐,这里给一个直通车票 极客算法训练笔记(五),十大经典排序之冒泡,选择,插入排序 。
spark2版本: object SparkCoreTest { def main(args: Array[String]): Unit = { // 使用sparksession来创建对象 val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkCoreTest") val spark: SparkSession = SparkSession.builder().conf
一.SparkSQL相关 在执行insert 语句时报错,堆栈信息为:FileSystem closed。常常出现在ThriftServer里面。 原因:由于hadoop FileSystem.get 获得的FileSystem会从缓存加载,如果多线程一个线程closedFileSystem会导致该BUG 解决方法:hdfs存在不从缓存加载的解决方式,在hdfs-site.xml 配置 fs.hdfs.impl.disable.cache=true即可 在执行Spark过程中抛出:Failed to big
所谓透视(Pivoting)就是把数据从行的状态旋转为列的状态的处理。其处理步骤为:
CarbonData 拥有不错的明细查询能力,比如简单的where条件过滤,性能大概是Parquet的20倍。数据的聚合分析方面,如果有不错的where过滤,则相当一部分查询也是快于Parquet的,并且拥有更少的Tasks数,这就意味着可以让你的Spark Query Service 有更好的并发能力。
Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景。
CASE具有两种格式,简单CASE函数和CASE搜索函数。这两种方式,大部分情况下可以实现相同的功能。
领取专属 10元无门槛券
手把手带您无忧上云