首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人工智能创新有望解决大数据难题

    导读:数据科学界经常开玩笑说,专家系统好比是过时的恐龙,它们很有意思,但是就现代应用而言不切实际。我完全不同意,人工智能领域没有哪一项进步完全取代得了专家系统的功能和效用。此外,由于专家系统已存在相当一段长的时间,你可以运用久经考验的最佳实践。下面是使用专家系统、让你开始入手的六个最佳实践。 我经常遇到着迷于深度学习、压缩分类和自动驾驶汽车的数据科学团队,它们渴望运用当下流行的算法。比如说,我最近在与一家大型金融机构合作,共同加强其网络安全;我们甚至还没有开始基本的监控,我团队中的一名数据科学家就在谈论K-

    010

    清华马少平教授回首往事:那些年,我们做过的AI

    量子位已获马少平教授授权转载 原发新浪微博:@马少平THU,点击左下角“阅读原文”可直达原文 马少平,清华大学计算机科学与技术系教授 研究领域:智能信息处理, 信息检索 讲授课程:人工智能导论、人工智能等 马少平还是中国人工智能学会常务理事 最近,有不同人问了我同一个问题:是什么渊源,走上了人工智能这条路。说实话,别说是人工智能,就连进入计算机行业,都完全是阴差阳错的结果,并不是我的主动选择。 1977年,文革结束后,突然传来消息,要回复高考了,当时我还在读高中,对于怎么填报志愿,一概不知。班主任老师的意见

    07

    人工智能技术在移动互联网发展中的应用

    智能化需求体现在两个方面 随着移动互联网的发展进入新的方向,移动互联网中的智能化已经成为新的发展趋势和主要需求。智能化需求目前主要体现在两个方面: 一方面是促生新的智能化应用,如自动驾驶汽车、虚拟现实和增强现实应用等,拓宽移动应用领域为用户提供更多应用选择。 另一方面是基于目前已有的大量应用数据进行智能化分析,在现有移动应用的基础上分析用户需求、明晰用户目标、提供用户感受,让用户在固有移动应用领域体验提升。 在智能化引领发展的阶段中,人工智能技术正在越来越广泛地应用在移动互联网领域,越来越多的人工智

    010

    人工智能技术在移动互联网发展中的应用

    随着移动互联网的发展进入新的方向,移动互联网中的智能化已经成为新的发展趋势和主要需求。智能化需求目前主要体现在两个方面: ●一方面是促生新的智能化应用,如自动驾驶汽车、虚拟现实和增强现实应用等,拓宽移动应用领域为用户提供更多应用选择。 ●另一方面是基于目前已有的大量应用数据进行智能化分析,在现有移动应用的基础上分析用户需求、明晰用户目标、提供用户感受,让用户在固有移动应用领域体验提升。 在智能化引领发展的阶段中,人工智能技术正在越来越广泛地应用在移动互联网领域,越来越多的人工智能技术更多地参与到移动互联网发

    04

    人工智能将改变商业决策

    近年来,人工智能(AI)开始起步,并在科技行业取得重大进展。从挑选人们想去的餐厅开始,Siri、谷歌Assistant、微软Cortana、亚马逊Alexa等人工智能助手帮助我们日常生活。我们每天都在不知不觉中习惯了使用人工智能。例如,智能手机键盘上的自动更正功能和Facebook上的自动标签功能都是由人工智能控制的。简而言之,人工智能产业正试图让电脑模仿人类的智能,而通过神经网络,他们已经成功了一半。在神经网络中,他们试图让晶体管表现得像人类大脑的神经元。机器学习是利用人工神经网络(ANNs)来促进多层次的学习。深度学习是另一种学习模型(机器学习的一部分),它基于数据表示而不是基于任务的算法。虽然人工智能的未来可能会让机器像人类一样做出决策,但现在已经在影响着人类的决策,尤其是商业决策。在本文中,我们将讨论一些关于人工智能如何(以及将如何)改变企业决策的有趣方法。

    02

    学习人工智能AI需要哪些最基础的知识?

    人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。 关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。 人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。 人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。 常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。 问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。 搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。 机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。 知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。 需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。 需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    03

    复旦大学肖仰华教授在线授课!从专家系统到知识图谱演进

    人类智能的本质是知识的发现与应用。 知识工程是人工智能学科中让机器具备人类的知识,特别是专家的知识及推理能力,来解决现实问题的重要分支。以专家系统为代表的传统知识工程实践在封闭应用场景下取得了显著效果。 但是,伴随着大规模开放应用的兴起,传统的专家系统面临着日益严峻的挑战。以 知识图谱 技术为代表的大数据知识工程有逐渐取代传统知识工程的趋势。 当前,数据驱动的大数据知识工程方兴未艾,并呈现出从互联网开放应用场景向特定领域应用场景转变的鲜明趋势。 知识图谱自2012年提出至今,发展迅速,如今已经成为人工智

    03

    【万赟】从图灵测试到深度学习:人工智能60年

    【新智元导读】美国休斯敦大学副教授万赟回溯人工智能60年历史,对比理性和感性两大流派各自轨迹,指出在目前这轮以深度学习为代表的人工智能新高潮中,各大企业对收购和人才猎取的投入最终很有可能以泡沫破裂收场;目前我们对人脑智能仍然缺乏理解,真正需要防范的是强势集团对人工智能技术的滥用。 作者简介:万赟,美国休斯敦大学维多利亚分校,副教授,研究方向为电子商务和互联网应用。 人工智能诞生 2014 年英美合作的电影《模仿游戏》讲述了英国数学家艾伦·图灵60年前在二战期间帮助设计电子计算机破译纳粹德国军事密码的真实

    06

    人工智能时代的研究热点是什么,主要应用领域是什么?

    随着不断提高的计算机速度、不断扩大的存储容量、不断降低的价格,以及不断发展的网络,很多在以前无法完成的工作在现在都能够实现。当前,智能接口、数据挖掘、主体及多主体系统是人工智能研究的三个热点。 人工智能经历了三次飞跃阶段: 实现问题求解是第一次,代替人进行部分逻辑推理工作的完成,如机器定理证明和专家系统; 智能系统能够和环境交互是第二次,从运行的环境中对信息进行获取,代替人进行包括不确定性在内的部分思维工作的完成,通过自身的动作,对环境施加影响,并适应环境的变化,如智能机器人; 第三次是智能系统,具有类

    010

    ​AI人工智能6大应用场景

    在农业场景,主要包括有作物管理、害虫和杂草处理、疾病管理、土壤管理、产量预测和管理等。作物管理,主要提供作物选择,施肥建议,使得作物免受恶劣天气影响等;害虫和杂草处理,即识别害虫和杂草,提供处理害虫和杂草的相关建议,推测害虫行进路线和繁殖规模和速度,推测杂草的生长状态和发展等;疾病管理,即预测、识别分类作物病害;土壤和作物管理,包括评估作物表面土壤湿度,预测天气,结合天气预测结果进行灌溉等;产量预测和管理,根据气候,季节等因素提供最佳播种时间建议,并预测最佳收成时间和最终产量等。其主要运用的AI技术最开始是基于规则的专家系统,发展到后来的模糊推理系统和人工神经网络的结合。主要涉及模式识别,图像识别等。

    01
    领券