首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用来自另一个数据帧的字符串从Pandas数据帧获取索引

从Pandas数据帧获取索引的方法是使用.loc[].iloc[]函数。这两个函数可以通过传递一个字符串或字符串列表来获取特定索引的行。

.loc[]函数用于基于标签的索引,可以接受一个字符串或字符串列表作为参数。例如,如果要获取索引为"index1"的行,可以使用以下代码:

代码语言:txt
复制
df.loc["index1"]

如果要获取多个索引的行,可以传递一个字符串列表:

代码语言:txt
复制
df.loc[["index1", "index2", "index3"]]

.iloc[]函数用于基于位置的索引,可以接受一个整数或整数列表作为参数。例如,如果要获取第一行的行,可以使用以下代码:

代码语言:txt
复制
df.iloc[0]

如果要获取多个位置的行,可以传递一个整数列表:

代码语言:txt
复制
df.iloc[[0, 1, 2]]

这些方法可以帮助您从Pandas数据帧中获取特定索引的行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PandasGUI:使用图形用户界面分析 Pandas 数据

Pandas 是我们经常使用一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们将它与 pandas 一起导入开始。...上述查询表达式将是: Pandas GUI 中统计信息 汇总统计数据为您提供了数据分布概览。在pandas中,我们使用describe()方法来获取数据统计信息。...PandasGUI 中数据可视化 数据可视化通常不是 Pandas 用途,我们使用 matplotlib、seaborn、plotly 等库。...如果您想快速概览数据检查汇总统计数据到绘制数据,PandasGUI 是一个很好工具,可以轻松完成,无需代码。

3.8K20

如何在 Pandas 中创建一个空数据并向其附加行和列?

它类似于电子表格或SQL表或R中data.frame。最常用熊猫对象是数据。大多数情况下,数据其他数据源(如csv,excel,SQL等)导入到pandas数据。...ignore_index 参数用于在追加行后重置数据索引。concat 方法第一个参数是要与列名连接数据列表。 ignore_index 参数用于在追加行后重置数据索引。...Pandas.Series 方法可用于列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据。...ignore_index参数设置为 True 以在追加行后重置数据索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据。“薪水”列值作为系列传递。序列索引设置为数据索引。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python 中 Pandas 库对数据进行操作的人来说非常有帮助。

27230
  • Pandas 秘籍:1~5

    在本章中,您将学习如何数据中选择一个数据列,该数据列将作为序列返回。 使用此一维对象可以轻松显示不同方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...数据数据(值)始终为常规字体,并且是与列或索引完全独立组件。 Pandas 使用NaN(不是数字)来表示缺失值。 请注意,即使color列仅包含字符串值,它仍使用NaN表示缺少值。...另见 Pandas read_csv函数官方文档 访问主要数据组件 可以直接数据访问三个数据组件(索引,列和数据)中每一个。...另见 Pandas dtypes官方文档 NumPy 数据类型官方文档 选择单列数据作为序列 序列是来自数据单列数据。 它是数据一个维度,仅由索引数据组成。...所有这三个对象都使用索引运算符来选择其数据数据是更强大,更复杂数据容器,但它们也使用索引运算符作为选择数据主要方式。 将单个字符串传递给数据索引运算符将返回一个序列。

    37.5K10

    Pandas 数据分析技巧与诀窍

    Pandas一个惊人之处是,它可以很好地处理来自各种来源数据,比如:Excel表格、CSV文件、SQL文件,甚至是网页。 在本文中,我将向您展示一些关于Pandas使用技巧。...请注意,所有内容都以字符串/文本形式返回。第一个参数是条目数,第二个参数是为其生成假数据字段/属性。...2 数据操作 在本节中,我将展示一些关于Pandas数据常见问题提示。 注意:有些方法不直接修改数据,而是返回所需数据。...在不知道索引情况下检索数据: 通常使用大量数据,几乎不可能知道每一行索引。这个方法可以帮你完成任务。因此,在因此,在“数据数据框中,我们正在搜索user_id等于1一行索引。...missing = {‘tags’:’mcq’, ‘difficulty’: ‘N’} data.fillna(value = missing, inplace = True) 数据获取已排序样本

    11.5K40

    直观地解释和可视化每个复杂DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备能力,但许多人可能无法利用所有这些能力。...操作数据可能很快会成为一项复杂任务,因此在Pandas八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...为了访问狗身高值,只需两次调用基于索引检索,例如 df.loc ['dog']。loc ['height']。 要记住:外观上看,堆栈采用表二维性并将列堆栈为多级索引。...作为另一个示例,当级别设置为0(第一个索引级别)时,其中值将成为列,而随后索引级别(第二个索引级别)将成为转换后DataFrame索引。 ?...“inner”:仅包含元件键是存在于两个数据键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。

    13.3K20

    Python数据处理从零开始----第二章(pandas)⑦pandas读写csv文件(1)

    在第一部分中,我们将通过示例介绍如何读取CSV文件,如何CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据,以及最后如何转换数据 根据特定数据类型(例如,使用Pandas read_csv...Pandas文件导入CSV 在这个Pandas读取CSV教程第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中数据。...image.png PandasURL读取CSV 在下一个read_csv示例中,我们将从URL读取相同数据。...在我们例子中,我们将使用整数0,我们将获得更好数据: df = pd.read_csv(url_csv, index_col=0) df.head() ?...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同数据文件。 在下一个示例中,我们将CSV读入Pandas数据使用idNum列作为索引

    3.7K20

    精通 Pandas 探索性分析:1~4 全

    这个想法是,该字符串包含在另一个 Python 脚本中重构对象所需所有信息。 我们使用read_pickle方法读取我们 PICKLE 文件,如以下代码所示。...Pandas 有一种选择行和列方法,称为loc。 我们将使用loc方法之前创建数据集中调用数据。...'County']] 我们具有索引7以及Metro和County列行中获取值。...我们将把真实数据集读入 Pandas。 我们将探索一些字符串方法,并将使用这些字符串方法数据集中选择和更改值。...三、处理,转换和重塑数据 在本章中,我们将学习以下主题: 使用inplace参数修改 Pandas 数据 使用groupby方法场景 如何处理 Pandas缺失值 探索 Pandas 数据索引

    28.2K10

    Pandas系列 - 基本数据结构

    面板中选择数据 系列(Series)是能够保存任何类型数据(整数,字符串,浮点数,Python对象等)一维标记数组。...创建DataFrame Pandas数据(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据(DataFrame) 列表 import...) major_axis axis 1,它是每个数据(DataFrame)索引(行) minor_axis axis 2,它是每个数据(DataFrame)pandas.Panel(data...,dict,constant和另一个数据(DataFrame) items axis=0 major_axis axis=1 minor_axis axis=2 dtype 每列数据类型 copy...复制数据,默认 - false 创建面板 可以使用多种方式创建面板 ndarrays创建 DataFramesdict创建 3D ndarray创建 # creating an empty panel

    5.2K20

    Pandas 秘籍:6~11

    另见 Pandas Index官方文档 生成笛卡尔积 每当两个序列或数据另一个序列或数据一起操作时,每个对象索引(行索引和列索引)都首先对齐,然后再开始任何操作。...但是,像往常一样,每当一个数据另一个数据或序列添加一个新列时,索引都将在创建新列之前首先对齐。 准备 此秘籍使用employee数据集添加一个新列,其中包含该员工部门最高薪水。...为了使索引自动对齐正常工作,我们将每个数据索引设置为部门。 步骤 5 之所以有效,是因为左侧数据每行索引;employee与来自右侧数据max_dept_sal一个且仅一个索引对齐。...让我们原始names数据开始,并尝试追加一行。append第一个参数必须是另一个数据,序列,字典或它们列表,但不能是步骤 2 中列表。...只有在 1.5 版(2015 年发布)中,matplotlib 才开始接受来自 Pandas 数据数据。 在此之前,必须将数据 NumPy 数组或 Python 列表传递给它。

    34K10

    精通 Pandas:1~5

    使用ndarrays/列表字典 在这里,我们列表字典中创建一个数据结构。 键将成为数据结构中列标签,列表中数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...与 Numpy ndarrays相比,pandas 数据结构更易于使用且更加用户友好,因为在数据和面板情况下,它们提供行索引和列索引数据对象是 Pandas 中最流行和使用最广泛对象。...列表索引器用于选择多个列。 一个数据多列切片只能生成另一个数据,因为它是 2D 。 因此,在后一种情况下返回是一个数据。...但是,它可用于获取序列不同行。 groupby操作结果不是数据,而是数据对象dict。 让我们涉及世界上最受欢迎运动-足球数据集开始。...由于并非所有列都存在于两个数据中,因此对于不属于交集数据每一行,来自另一个数据列均为NaN。

    19.1K10

    30 个 Python 函数,加速你数据分析处理速度!

    Pandas 是 Python 中最广泛使用数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。...我们减了 4 列,因此列数 14 个减少到 10 列。 2.选择特定列 我们 csv 文件中读取部分列数据。可以使用 usecols 参数。...12.Groupby 函数 Pandas Groupby 函数是一个多功能且易于使用功能,可帮助获取数据概述。它使浏览数据集和揭示变量之间基本关系更加容易。 我们将做几个组比函数示例。...df[['Geography','Exited','Balance']].sample(n=6).reset_index(drop=True) 17.将特定列设置为索引 我们可以将数据任何列设置为索引...我发现使用 Pandas 创建基本绘图更容易,而不是使用其他数据可视化库。 让我们创建平衡列直方图。 ? 26.减少浮点数小数点 pandas 可能会为浮点数显示过多小数点。

    9.4K60

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    接下来,我们将讨论在数据中设置数据子集,以便您可以快速轻松地获取所需信息。 选取数据子集 现在我们可以制作 Pandas 序列和数据,让我们处理它们包含数据。...在本节中,我们将看到如何获取和处理我们存储在 Pandas 序列或数据数据。 自然,这是一个重要的话题。 这些对象否则将毫无用处。 您不应该惊讶于如何对数据进行子集化有很多变体。...一个特别有趣情况是使用布尔值建立索引时。 我将展示这种用法可能看起来像什么。 这样可以方便地获取特定范围内数据。...我们可以使用apply函数来获取所需数量,但是使用数据提供现有方法通常更有用,并且也许更快。 让我们看一些使用数据演示。 与该序列一起使用许多技巧也可以与数据一起使用,但有些复杂。...毕竟,我们不能用逗号分隔索引级别,因为我们有第二维,即列。 因此,我们使用元组为切片数据维度提供了说明,并提供了指示如何进行切片对象。 元组每个元素可以是数字,字符串或所需元素列表。

    5.4K30

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象中插入或者是删除列; 显式数据可自动对齐...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 列返回数据一个子集。

    6.7K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象中插入或者是删除列; 显式数据可自动对齐...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 列返回数据一个子集。

    7.5K30

    媲美Pandas?一文入门PythonDatatable操作

    数据读取 这里使用数据集是来自 Kaggle 竞赛中 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整贷款数据,即当前贷款状态 (当前,延迟...注意:这里用颜色来指代数据类型,其中红色表示字符串,绿色表示整型,而蓝色代表浮点型。...在 datatable 中,所有这些操作主要工具是方括号,其灵感来自传统矩阵索引,但它包含更多功能。...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同 DT[i,j] 数学表示法。下面来看看如何使用 datatable 来进行一些常见数据处理工作。 ?...本文所涉及代码可以 Github 或 binder 上获取: Github 地址: https://github.com/parulnith/An-Overview-of-Python-s-Datatable-package

    7.6K50

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以 DataFrame 或者更高维度对象中插入或者是删除列; 显式数据可自动对齐...简化将数据转换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 列返回数据一个子集。

    6.3K10

    Pandas 学习手册中文第二版:1~5

    即使您创建数据源或组织内部获取数据数据也通常是非常原始。 原始数据意味着数据可能是杂乱无章,可能是各种格式,而且是错误; 相对于支持您分析,它可能是不完整,需要手动进行扩充。...例如,以下内容返回温度差平均值: Pandas 数据 Pandas Series只能与每个索引标签关联一个值。 要使每个索引标签具有多个值,我们可以使用一个数据。...以下是第二到第四行温度差值切片: 可以使用.loc和.iloc属性检索数据整个行。 .loc确保按索引标签查找,其中.iloc使用 0 开始位置。...一种常见情况是,一个Series具有整数类型标签,另一个字符串,但是值基本含义是相同远程源获取数据时,这很常见)。...在创建数据时未指定列名称时,pandas 使用 0 开始增量整数来命名列。

    8.3K10

    NumPy、Pandas中若干高效函数!

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以DataFrame或者更高维度对象中插入或者是删除列; 显式数据可自动对齐...DataFrame对象过程,而这些数据基本是Python和NumPy数据结构中不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集; 更加灵活地重塑...用于将一个Series中每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个dict或Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用copy ()函数。...,基于dtypes列返回数据一个子集。

    6.6K20

    媲美Pandas?PythonDatatable包怎么用?

    数据读取 这里使用数据集是来自 Kaggle 竞赛中 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整贷款数据,即当前贷款状态 (当前,延迟...注意:这里用颜色来指代数据类型,其中红色表示字符串,绿色表示整型,而蓝色代表浮点型。...在 datatable 中,所有这些操作主要工具是方括号,其灵感来自传统矩阵索引,但它包含更多功能。...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同 DT[i,j] 数学表示法。下面来看看如何使用 datatable 来进行一些常见数据处理工作。 ?...本文所涉及代码可以 Github 或 binder 上获取: Github 地址: https://github.com/parulnith/An-Overview-of-Python-s-Datatable-package

    7.2K10

    媲美Pandas?PythonDatatable包怎么用?

    数据读取 这里使用数据集是来自 Kaggle 竞赛中 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整贷款数据,即当前贷款状态 (当前,延迟...注意:这里用颜色来指代数据类型,其中红色表示字符串,绿色表示整型,而蓝色代表浮点型。...在 datatable 中,所有这些操作主要工具是方括号,其灵感来自传统矩阵索引,但它包含更多功能。...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同 DT[i,j] 数学表示法。下面来看看如何使用 datatable 来进行一些常见数据处理工作。 ?...本文所涉及代码可以 Github 或 binder 上获取: Github 地址: https://github.com/parulnith/An-Overview-of-Python-s-Datatable-package

    6.7K30
    领券