首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

让python快到飞起 | 什么是 DASK ?

该单机调度程序针对大于内存的使用量进行了优化,并跨多个线程和处理器划分任务。它采用低用度方法,每个任务大约占用 50 微秒。 为何选择 DASK?...Dask 的扩展性远优于 Pandas,尤其适用于易于并行的任务,例如跨越数千个电子表格对数据进行排序。加速器可以将数百个 Pandas DataFrame 加载到内存中,并通过单个抽象进行协调。...开发者可以使用标准的 Dask 工作流程准备和设置数据,然后将数据交给 XGBoost 或 Tensorflow 。...凭借一大群对 Python 情有独钟的数据科学家,Capital One 使用 Dask 和 RAPIDS 来扩展和加速传统上难以并行化的 Python 工作负载,并显著减少大数据分析的学习曲线。...与 Anaconda 类似,Quansight 为使用 Dask 的企业提供咨询服务和培训。

4.4K123

NVIDIA的python-GPU算法生态 ︱ RAPIDS 0.10

XGBoost 从cuML 训练到推理 Dask cuGraph cuSpatial cuDataShader cuXfilter RAPIDS社区 阿里云GPU云服务器现已支持NVIDIA RAPIDS...虽然新工具和工作流程的出现激动人心,但很少有人反过来思考在Apache Arrow之前,这些库和框架如何进行有效协作。...使用单个V100 GPU和两行Python代码,用户就可以加载一个已保存的XGBoost或LightGBM模型,并对新数据执行推理,速度比双20核CPU节点快36倍。...这些原语会被用于将源和目标边缘列从Dask Dataframe转换为图形格式,并使PageRank能够跨越多个GPU进行缩放。 下图显示了新的多GPU PageRank算法的性能。...按照上述文档,可以运行一个单机的GPU加速的数据预处理+训练的XGBoost Demo,并对比GPU与CPU的训练时间。 用户也可以通过选择更多的数据量和GPU个数来验证多GPU的支持。

3.2K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Wordbatch对Python分布式AI后端进行基准测试

    与竞争语言相比,Python在DS和AI的几乎每个方面都可以与之竞争或超越:最新的机器学习算法及其高效实现(Scikit-Learn,LightGBM,XGBoost),数据处理和分析(Pandas,cuDF...第二个设置使用直接10 Gb / s以太网连接将另一个工作节点与18核i9-7980XE CPU连接。...Loky和Dask都有越来越多的时间使用,大致在同一时间使用串行收敛,但随着数据量的增加,可能会超过串行时间使用。这种奇怪行为的可能原因是流程之间缺乏共享以及此任务需要两次向每个工作人员发送字典。...实际应用程序将涉及大型集群上更复杂的管道,但这会使直接比较变得复杂,原因在于:配置调度程序的选择,关于如何实现共享数据的设计决策以及诸如演员之类的远程类,以及如何使用GPU和其他非CPU处理器。...但是,大多数实际流水线都会进行需要高带宽的数据传输。对于更多节点,这些框架应该都使用100 Gb / s,并且应该规划AI管道以最小化网络流量并最大化分布式核心的使用。

    1.8K30

    分布式计算框架:Spark、Dask、Ray

    Dask的最初目的只是为了将NumPy并行化,这样它就可以利用具有多个CPU和核心的工作站计算机。与Spark不同,Dask开发中采用的最初设计原则之一是 "无发明"。...这一决定背后的想法是,使用Dask的工作应该让使用Python进行数据分析的开发者感到熟悉,而且升级时间应该最小。...2020年6月,Nvidia使用RAPIDS、Dask和UCX在16个DGX A100系统(128个A100 GPU)上进行TPCx-BB测试,取得了惊人的结果。...弊端: 缺乏商业支持(但有几家公司已开始在此领域的工作,例如Coiled和QuanSight)。 没有内置的GPU支持,依赖于RAPIDS进行GPU加速。...这个调度器很好,因为它设置简单,保持最小的延迟,允许点对点的数据共享,并支持比简单的map-reduce链复杂得多的工作流。

    1.4K31

    如何通过Maingear的新型Data Science PC将NVIDIA GPU用于机器学习

    如果想跨多个GPU分配工作流,则还有Dask-cuDF库[5]。...此数据帧使用大约15 GB的内存)训练XGBoost模型在CPU上花费1分钟46s(内存增量为73325 MiB) ,在GPU上仅花费21.2s(内存增量为520 MiB)。...使用GPU更快地训练XGBoost模型5倍 结论 借助数据科学,始终需要探索和尝试新事物。...拥有一台可以改善这一点的PC和工具确实可以加快工作,并帮助更快地在数据中发现有趣的模式。想象得到一个40 GB的csv文件,然后只需将其加载到内存中即可查看其内容。...RAPIDS工具为机器学习工程师带来了深度学习工程师已经熟悉的GPU处理速度的提高。为了生产使用机器学习的产品,需要进行迭代并确保拥有可靠的端到端流水线,并且使用GPU执行它们将有望改善项目输出。

    2.1K40

    Cloudera机器学习中的NVIDIA RAPIDS

    创建具有8核、16GB内存和1个GPU的会话 使用以下命令从终端会话中安装需求: code pip install -r requirements.txt 获取数据集 为了使代码正常工作,应将CSV格式的数据放入数据子文件夹中...简单探索和模型 与所有机器学习问题一样,让我们从一个简单的模型开始。这使我们有机会建立基准以进行改进,并检查机器学习是否可以立即从数据中学到东西。...并分析结果。 特征工程 现在我们对它的工作原理有了一个了解,让我们看一个更高级的功能工程管道。 对于我们的简单要素工程流水线,我们仅使用主训练表,而未查看数据集中的其他表。...在此阶段值得注意的是,RAPIDS cuDF只能利用一个GPU。如果我们希望扩展到单个GPU之外,则需要利用`dask_cudf`。 建模 对于高级建模部分,我们将再次利用xgboost作为主要方法。...同样,我们使用cuML版本,因此我们不必将数据传输回CPU。 XGBoost还具有GPU加速的特征重要性计算和SHAP计算,以提高解释性。

    1K20

    XGBoost2.0重大更新!

    它已广泛应用于各个领域,包括数据科学、金融和在线广告。最近,XGBoost 发布了备受期待的新版本 XGBoost 2.0,它引入了一系列令人兴奋的功能和增强功能。...此功能允许用户利用 GPU 的计算能力来加速训练和推理过程。与 CPU 实现相比,通过利用 GPU,XGBoost 可以处理更大的数据集并实现更快的处理时间。...' } model = xgb.train( params , dtrain)改进稀疏数据处理:高效处理稀疏数据XGBoost 2.0 采用优化来增强稀疏数据的处理,从而缩短训练和推理时间。...XGBoost 2.0 引入了新的正则化技术,包括鼓励模型使用更少特征的“稀疏感知”正则化。该技术降低了模型复杂性并增强了可解释性,特别是在特征选择至关重要的场景中。...的分布式 XGBoost带有 XGBoost4J-Spark-GPU 的分布式 XGBoost带有 Dask 的分布式 XGBoost使用 PySpark 的分布式 XGBoost带有 Ray 的分布式

    1.3K21

    从GB到TB:Python处理超大规模数据的4大杀器(Mars_Dask_CuPy_Vaex)

    Dask 就像是一个管弦乐队的指挥家,它协调着众多的演奏者(计算资源),让它们按照统一的节奏(任务调度)进行工作,从而演奏出美妙的数据处理 “乐章”。...最后,如果我们需要在 CPU 上进一步处理结果,使用cp.asnumpy方法将结果矩阵的数据从 GPU 复制回 CPU。...网络开销:当使用 Dask 进行分布式计算时,数据在不同节点之间传输会产生网络开销。要尽量减少不必要的数据传输,合理规划数据存储和计算节点的位置。...在使用 CuPy 进行 GPU 计算时,如何优化内存使用? 可以采用分块计算的方式,避免一次性将大量数据加载到 GPU 内存中。...结语 到这里,关于 Python 处理超大规模数据的四大杀器 ——Mars、Dask、CuPy 和 Vaex 的介绍就全部结束啦!

    22010

    XGBoost,NVIDIA是什么

    使用 XGBoost 时,树是并行构建的,而不是像 GBDT 那样按顺序构建。XGBoost 遵循 level-wise 策略,扫描梯度值并使用这些部分和来评估训练集中每个可分割点的分割质量。...为何 XGBoost 在 GPU 上表现更出色 使用 XGBoost 处理由 CPU 提供动力的机器学习任务实际上可能需要数小时才能运行。...Dask API 可轻松扩展到多个节点或多个 GPU,并且 RAPIDS 内存管理器 (RMM) 与 XGBoost 集成,因此您可以共享单个高速内存池。...GPU 加速的 XGBoost GPU 加速的 XGBoost 算法利用并行前缀快速求和运算来扫描所有可能的分割,并通过并行基数排序对数据进行重新分区。...GPU 加速的 Spark XGBoost 提高了海量数据的预处理速度,允许在 GPU 显存内实现更大的数据量,并缩短了 XGBoost 的训练和调优时间。

    12210

    我整理了数据科学,数据可视化和机器学习的Python顶级库

    这篇文章中包括的类别,我们认为这些类别考虑了通用的数据科学库,即那些可能被数据科学领域的从业人员用于广义的,非神经网络的,非研究性工作的库: 数据-用于数据管理,处理和其他处理的库 数学-虽然许多库都执行数学任务...支持在CPU和GPU上进行计算。 10....中的近似最近邻居已针对内存使用情况以及加载/保存到磁盘进行了优化 12....VisPy通过OpenGL库利用现代图形处理单元(GPU)的计算能力来显示非常大的数据集。 31....解释与探索 34. eli5(https://github.com/TeamHG-Memex/eli5) star:2200,贡献贡献:1198,贡献者:15 一个用于调试/检查机器学习分类器并解释其预测的库

    1.2K31

    2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

    XGBoost 最大的特点在于,它能够自动利用 CPU 的多线程进行并行,同时在算法上加以改进提高了精度。它是经过优化的分布式梯度提升库,可扩展性强,高效、灵活且可移植。...DL4J 最重要的特点是支持分布式,可以在 Spark 和 Hadoop 上运行,它支持分布式 CPU 和 GPU 运行,并可以利用 Spark 在多台服务器多个 GPU 上开展分布式的深度学习模型训练...Detectron2 通过全新的模块化设计,变得更灵活且易于扩展,它能够在单个或多个 GPU 服务器上提供更快速的训练速度,包含了更大的灵活性与扩展性,并增强了可维护性和可伸缩性,以支持在生产中的用例。...它允许多种算法可以跨越分布式 Spark 群集上运行,并且支持 CPU 和 GPU 运行。...用于创建和管理交互式 Jupyter notebook 的 JupyterHub,可配置为使用 CPU 或 GPU,并通过单一设置调整至单个集群大小的 TensorFlow 训练控制器(Tensorflow

    89910

    2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

    XGBoost 最大的特点在于,它能够自动利用 CPU 的多线程进行并行,同时在算法上加以改进提高了精度。它是经过优化的分布式梯度提升库,可扩展性强,高效、灵活且可移植。...DL4J 最重要的特点是支持分布式,可以在 Spark 和 Hadoop 上运行,它支持分布式 CPU 和 GPU 运行,并可以利用 Spark 在多台服务器多个 GPU 上开展分布式的深度学习模型训练...Detectron2 通过全新的模块化设计,变得更灵活且易于扩展,它能够在单个或多个 GPU 服务器上提供更快速的训练速度,包含了更大的灵活性与扩展性,并增强了可维护性和可伸缩性,以支持在生产中的用例。...它允许多种算法可以跨越分布式 Spark 群集上运行,并且支持 CPU 和 GPU 运行。...用于创建和管理交互式 Jupyter notebook 的 JupyterHub,可配置为使用 CPU 或 GPU,并通过单一设置调整至单个集群大小的 TensorFlow 训练控制器(Tensorflow

    76110

    2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

    XGBoost 最大的特点在于,它能够自动利用 CPU 的多线程进行并行,同时在算法上加以改进提高了精度。它是经过优化的分布式梯度提升库,可扩展性强,高效、灵活且可移植。...DL4J 最重要的特点是支持分布式,可以在 Spark 和 Hadoop 上运行,它支持分布式 CPU 和 GPU 运行,并可以利用 Spark 在多台服务器多个 GPU 上开展分布式的深度学习模型训练...Detectron2 通过全新的模块化设计,变得更灵活且易于扩展,它能够在单个或多个 GPU 服务器上提供更快速的训练速度,包含了更大的灵活性与扩展性,并增强了可维护性和可伸缩性,以支持在生产中的用例。...它允许多种算法可以跨越分布式 Spark 群集上运行,并且支持 CPU 和 GPU 运行。...用于创建和管理交互式 Jupyter notebook 的 JupyterHub,可配置为使用 CPU 或 GPU,并通过单一设置调整至单个集群大小的 TensorFlow 训练控制器(Tensorflow

    1.4K20

    Python处理大数据,推荐4款加速神器

    Mars Mars 是numpy 、 pandas 、scikit-learn的并行和分布式加速器,由阿里云高级软件工程师秦续业等人开发的一个基于张量的大规模数据计算的统一框架,目前它已在 GitHub...该工具能用于多个工作站,而且即使在单块 CPU 的情况下,它的矩阵运算速度也比 NumPy(MKL)快。 ?...Dask更侧重与其他框架,如:Numpy,Pandas,Scikit-learning相结合,从而使其能更加方便进行分布式并行计算。 ?...项目地址:https://github.com/dask/dask 官方文档:https://docs.dask.org/en/latest/ CuPy CuPy 是一个借助 CUDA GPU 库在英伟达...基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。

    2.3K10

    【玩转GPU】基于GPU云服务器实现MySQL数据库加速

    摘要:本文通过在GPU云服务器上部署和配置MySQL数据库,并使用RAPIDS GPU数据处理库进行加速,来详细阐述如何利用GPU强大的并行计算能力,加速MySQL数据库的查询和分析操作,使其比传统CPU...这里我们使用腾讯云的GPU云服务器,配置如下:-实例类型:计算优化型GN8(8核CPU + 1块Tesla P40 GPU)-内存:64GB-操作系统:CentOS 7.6-存储:高效云盘500GB二、...SQL查询,我们还可以使用RAPIDS在GPU上进行更复杂的分析和机器学习:导入cudf, cuml用于GPU加速import cudf, cuml读取数据到GPU内存df = cudf.read_csv...)y_pred = clf.predict(X_test)使用RAPIDS的cudf和cuml组件,可以将数据库中数据加载到GPU内存,并使用GPU来进行聚合、排序、机器学习等复杂运算,可实现数十倍的加速效果...九、总结本文详细演示了如何在GPU云服务器上部署MySQL数据库,并使用RAPIDS等库实现GPU加速。GPU通过强大的并行计算能力,可以极大优化数据库查询、运算和分析性能。

    2.4K11

    再见Pandas,又一数据处理神器!

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...Dask-cuDF: Dask-cuDF在需要的情况下扩展Dask,以允许其DataFrame分区使用cuDF GPU DataFrame而不是Pandas DataFrame进行处理。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。...Dask-cuDF: 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。...Dask-cuDF允许您在分布式GPU环境中进行高性能的数据处理,特别是当数据集太大,无法容纳在单个GPU内存中时。

    49010

    【科研利器】Python处理大数据,推荐4款加速神器

    Mars Mars 是numpy 、 pandas 、scikit-learn的并行和分布式加速器,由阿里云高级软件工程师秦续业等人开发的一个基于张量的大规模数据计算的统一框架,目前它已在 GitHub...该工具能用于多个工作站,而且即使在单块 CPU 的情况下,它的矩阵运算速度也比 NumPy(MKL)快。...Dask更侧重与其他框架,如:Numpy,Pandas,Scikit-learning相结合,从而使其能更加方便进行分布式并行计算。...项目地址:https://github.com/dask/dask 官方文档:https://docs.dask.org/en/latest/ CuPy CuPy 是一个借助 CUDA GPU 库在英伟达...基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。

    1.4K90
    领券