首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在交叉验证中使用SHAP?

第一点是:大多数指南在基本的训练/测试拆分上使用SHAP值,但不在交叉验证上使用(见图1) 使用交叉验证可以更好地了解结果的普适性,而基本的训练/测试拆分的结果很容易受到数据划分方式的影响而发生剧烈变化...机器学习中的不同评估程序。 另一个缺点是:我遇到的所有指南都没有使用多次交叉验证来推导其SHAP值 虽然交叉验证比简单的训练/测试拆分有很大的改进,但最好每次都使用不同的数据拆分来重复多次。...幸运的是,我们可以在下面编写代码来解决这个问题。 2.3. 重复交叉验证 使用交叉验证可以大大提高工作的鲁棒性,尤其是在数据集较小的情况下。...但是一旦交叉验证进入方程式,这个概念似乎被忘记了。实际上,人们经常使用交叉验证来优化超参数,然后使用交叉验证对模型进行评分。在这种情况下,发生了数据泄漏,我们的结果将会(即使只是稍微)过于乐观。...嵌套交叉验证是我们的解决方案。它涉及在我们正常的交叉验证方案(这里称为“外循环”)中取出每个训练折叠,并使用训练数据中的另一个交叉验证(称为“内循环”)来优化超参数。

20610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    交叉验证,K折交叉验证的偏差和方差分析

    交叉验证交叉验证是一种通过估计模型的泛化误差,从而进行模型选择的方法。没有任何假定前提,具有应用的普遍性,操作简便, 是一种行之有效的模型选择方法。1....交叉验证的产生人们发现用同一数据集,既进行训练,又进行模型误差估计,对误差估计的很不准确,这就是所说的模型误差估计的乐观性。为了克服这个问题,提出了交叉验证。...交叉验证方法留一交叉验证(leave-one-out):每次从个数为N的样本集中,取出一个样本作为验证集,剩下的N-1个作为训练集,重复进行N次。最后平均N个结果作为泛化误差估计。...相对来说,留一交叉验证,每次只留下一个作为验证集,其余数据进行训练,产生泛化误差估计结果相对 真值偏差较小。很多文献表明留一交叉验证在回归下的泛化误差估计是渐进无偏的。...留P交叉验证,取决于P的大小,P较小时,等同于留一交叉验证的情况。P较大,会产生较大的偏差,不可忽略。K折交叉验证,同样取决于K的大小。K较大时,类似留一交叉验证;K较小时,会产生不可忽略的偏差。

    3.9K30

    TensorFlow 入门(2):使用DNN分类器对数据进行分类

    DNN(深度神经网络)分类器实现对鸢尾花的分类。...这就是我对于官方的 DNN 分类器示例的一些理解,希望能帮助读者学习,完整代码: #!...从这里也可以看到,DNN 分类器的训练过程是比较耗时的,具体执行的过程并不算特别耗时。...学会使用 DNN 分类器之后,如果有一些数据,有几个输入特征值,需要将其分类,就可以采用 DNN 分类器很方便地对其进行处理,前提是训练的数据集数量足够,这样才能达到比较好的训练效果。...其他还有很多问题可以通过 DNN 分类器解决,了解这个工具后,遇到问题时可以想想能否用这些机器学习的工具帮忙解决问题,在使用过程中,逐步理解各种神经网络的知识,如果直接看理论,难度很大也很枯燥,在实践中学习会更加容易

    21.7K40

    测试运行 - 使用 CNTK 的 DNN 图像分类简介

    图像分类的两种最常见方法是使用标准的深度神经网络 (DNN),或使用卷积神经网络 (CNN)。在本文中我将介绍 DNN 方法中,使用 CNTK 库。 请参阅图 1,了解本文所要努力的方向。...图 1 DNN 使用 CNTK 的图像分类 演示程序使用 784 输入的节点 (一个用于每个像素)、 两个隐藏的处理层 (各有 400 节点) 和 10 个输出节点 (一个用于每个可能的数字) 创建一个标准的神经网络...交叉熵误差通常是分类问题的最佳选择。定型分类错误 (tr_eror) 对象可以用于在定型期间或定型后自动计算错误预测所占的百分比。指定的损失函数是必需的但指定的分类误差函数是可选的。...总结 使用深度神经网络用于进行简单的图像分类最常用的方法。但是,Dnn 有至少两个主要限制。首先,Dnn 不缩放至具有大量的像素的图像。其次,Dnn 没有明确考虑到图像像素的几何图形。...也就是说,对于简单的图像分类使用 DNN 的任务更容易和通常只是受到 (或甚至更多) 比使用 CNN 效益。

    99220

    用交叉验证改善模型的预测表现-着重k重交叉验证

    机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“)。 预测模型为何无法保持稳定?...然而,最终的分数是否会有改善依然未知,因为我们不知道这个模型是更好的发掘潜在关系了,还是过度拟合了。为了解答这个难题,我们应该使用交叉验证(cross validation)技术。...它能帮我们得到更有概括性的关系模型。 实际上,机器学习关注的是通过训练集训练过后的模型对测试样本的分类效果,我们称之为泛化能力。左右两图的泛化能力就不好。...留一法交叉验证 ( LOOCV ) 这种方法只保留一个数据点用作验证,用剩余的数据集训练模型。然后对每个数据点重复这个过程。这个方法有利有弊: 由于使用了所有数据点,所以偏差较低。...K 层交叉验证 (K- fold cross validation) 从以上两个验证方法中,我们学到了: 应该使用较大比例的数据集来训练模型,否则会导致失败,最终得到偏误很大的模型。

    1.6K60

    使用Python实现交叉验证与模型评估

    在本文中,我们将介绍交叉验证的原理和常见的几种交叉验证方法,并使用Python来实现这些方法,并展示如何使用交叉验证来评估模型的性能。 什么是交叉验证?...使用Python实现交叉验证 1. 简单交叉验证 简单交叉验证是最基本的交叉验证方法,它将数据集划分为训练集和测试集,然后在测试集上评估模型性能。...K折交叉验证 K折交叉验证将数据集划分为K个大小相等的子集,然后每次使用其中一个子集作为测试集,其余的K-1个子集作为训练集。...) # 输出平均准确率 print("平均准确率:", scores.mean()) 结论 通过本文的介绍,我们了解了交叉验证的原理和常见的几种交叉验证方法,并使用Python实现了简单交叉验证和K折交叉验证...希望本文能够帮助读者理解交叉验证的基本概念,并能够在实际应用中使用Python实现这些方法。

    44610

    Cross validation with ShuffleSplit使用ShuffleSplit做交叉验证

    ShuffleSplit是交叉验证最简单的技术之一,这种交叉验证技术将从数据集中简单的抽取一个样本来具体说明大量的迭代。...ShuffleSplit是另一种非常简单交叉验证技术,我们将具体说明数据集中的总量,然后关注剩余部分。我们将学习一个单变量数据集的均值估计的例子。...这是重采样的某种相似的形式,但是这将说明当出现交叉验证的时候,为什么我们使用交叉验证的一个原因。...of the dataset to estimate the mean and see how close it is to the underlying mean: 首先,我们需要生成数据集,我们将使用...我们将得到以下输出结果: image.png Now, we can use ShuffleSplit to fit the estimator on several smaller datasets:现在,我们使用

    97340

    使用sklearn的cross_val_score进行交叉验证

    所以这里记录一下选择参数的方法,以便后期复习以及分享。 (除了贝叶斯优化等方法)其它简单的验证有两种方法:1、通过经常使用某个模型的经验和高超的数学知识。2、通过交叉验证的方法,逐个来验证。...很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_val_score方法,在sklearn中可以使用这个方法。...交叉验证的原理不好表述下面随手画了一个图: (我都没见过这么丑的图)简单说下,比如上面,我们将数据集分为10折,做一次交叉验证,实际上它是计算了十次,将每一折都当做一次测试集,其余九折当做训练集,这样循环十次...通过传入的模型,训练十次,最后将十次结果求平均值。将每个数据集都算一次 交叉验证优点: 1:交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。...2:还可以从有限的数据中获取尽可能多的有效信息。 我们如何利用它来选择参数呢? 我们可以给它加上循环,通过循环不断的改变参数,再利用交叉验证来评估不同参数模型的能力。最终选择能力最优的模型。

    1.6K10

    交叉验证_验证的三种方法

    通过图片可以看出,划分出来的测试集(test set)是不可以动的,因为模型参数的优化是使用验证集(validation set),这个结果是有偏差的,所以需要一个没见过的新数据集进行泛化能力测试。...交叉验证(Cross Validation)是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集 (training set),另一部分做为验证集...(validation set),当然还要留出测试集部分(test set),首先用训练集对分类器进行训练,在利用验证集来优化模型的超参数(hyperparameter),最后来使用测试集来测试模型的泛化能力...2. k折交叉验证(k-fold cross validation) k折交叉验证是对留出法的改进, k 折交叉验证通过对 k 个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感...但是训练复杂度增加了,因为模型的数量与原始数据样本数量相同。 一般在数据缺乏时使用。 此外: 多次 k 折交叉验证再求均值,例如:10 次 10 折交叉验证,以求更精确一点。

    2.6K10

    机器学习中的交叉验证

    这样就需要把数据分成三份,一份训练、一份验证、一份测试,先在训练集上训练模型,然后验证模型结果,最后再在测试集上判断模型的真正效果,但是这样做的结果就是大幅降低了数据的使用率,因训练数据不够多而造成欠拟合...最基本的方法被称之为:k-折交叉验证。k-折交叉验证将训练集划分为k个较小的集合(其他方法会在下面描述,主要原则基本相同)。...计算交叉验证指标 使用交叉验证最简单的方法是在估计器和数据集上调用cross_val_score辅助函数。...交叉验证迭代器 接下来的部分列出了一些用于生成索引标号,用于在不同的交叉验证策略中生成数据划分的工具。...基于类标签的交叉验证迭代器 一些分类问题在目标类别的分布上可能表现出很大的不平衡性:例如,可能会出现比正样本多数倍的负样本。

    1.9K70

    在Python中使用交叉验证进行SHAP解释

    首先,大多数指南都在基本的训练/测试拆分上使用SHAP值,而不是在交叉验证上使用(见图1)。...另一个不足之处是,我所找到的所有指南都没有使用多次重复的交叉验证来计算它们的SHAP值。虽然交叉验证在简单的训练/测试拆分上是一个重大进步,但最好的做法是使用不同的数据拆分多次重复进行交叉验证。...重复交叉验证 使用交叉验证大大增加了工作的稳健性,特别是对于较小的数据集。然而,如果我们真的想做好数据科学,那么交叉验证应该在数据的许多不同拆分上重复进行。...但是一旦引入了交叉验证,这个概念似乎就被忘记了。实际上,人们经常使用交叉验证来优化超参数,然后使用交叉验证来评分模型。在这种情况下,数据泄漏已经发生,我们的结果将会(即使只有轻微的)过于乐观。...嵌套交叉验证是我们应对这个问题的解决方案。它涉及采用我们正常的交叉验证方案中的每个训练折叠(这里称为“外循环”),通过在每个折叠的训练数据上使用另一个交叉验证(称为“内循环”)来优化超参数。

    27310

    交叉验证的3种方法

    三者的关系如下 ? 训练集用于训练模型,验证集用于评估模型,调整模型超参数,测试集则用于评估最后生成的模型的效果。其中验证集是非必需的。...利用验证集来评估模型效果,调整超参数的过程称之为交叉验证,有以下3种常用的策略 1....3. k fold cross validation 称之为K折交叉验证,K指定了迭代的次数,示意如下 ? 将数据集均匀划分为k个子集,每次迭代,使用一个子集作为测试集,其他的作为训练集。...LOOCV也可以看做是K折交叉验证的一个特例,K等于样本总数N。对于得到的k个模型,从其中挑选误差最小的作为最终的模型。 对于机器学习而言,训练集上的误差叫做训练误差,测试集上的误差叫做泛化误差。...交叉验证的方法同时评估训练误差和泛化误差,可以有效避免过拟合。 ·end· —如果喜欢,快分享给你的朋友们吧— 原创不易,欢迎收藏,点赞,转发!

    1.5K10

    机器学习中的交叉验证思想

    通常我们使用的交叉验证方法有下面几种: 简单交叉验证(simple cross validation) 简单交叉验证当然很简单了,就是把整个训练集随机分为两部分(通常是70%的训练集,30%的评估集)。...所以这个方法只能在数据非常易得的情况下使用,如果数据比较珍贵,显然这种方法就不适用了。 有时候这个方法好像也被称为HoldOut验证(Hold-Out Method)。...其实这也不算是交叉验证了,因为他的训练集并没有交叉。 通常情况下我们是直接选取前70%为训练集,但是如果训练数据是按照一定规律排放的,那么选取数据的时候就要先打乱顺序,或者按照一定的随机方法选取数据。...这个方法一方面保证了数据充分被使用训练了,避免了数据的浪费;另一方面也互相进行了验证,达到了交叉验证的效果,不过计算代价还是有点高。...这种方法又被叫做留一交叉验证(Leave-One-Out Cross Validation),当数据极为匮乏的时候才会使用。

    83220

    时间序列的蒙特卡罗交叉验证

    交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。...时间序列交叉验证 TimeSeriesSplit通常是时间序列数据进行交叉验证的首选方法。下图1说明了该方法的操作方式。可用的时间序列被分成几个大小相等的折叠。...使用TimeSeriesSplit进行交叉验证的主要好处如下: 它保持了观察的顺序。这个问题在有序数据集(如时间序列)中非常重要。 它生成了很多拆分 。几次拆分后可以获得更稳健的评估。...因此,初始迭代可能不能代表完整的时间序列。这个问题会影响性能估计。 那么如何解决这个问题? 蒙特卡罗交叉验证 蒙特卡罗交叉验证(MonteCarloCV)是一种可以用于时间序列的方法。...MonteCarloCV与TimeSeriesSplit的区别主要有两个方面: 对于训练和验证样本量,使用TimeSeriesSplit时训练集的大小会增加。

    1.2K40

    VCL 控件分类_验证控件的分类

    可以用来做悬浮控件(该事件中将控件的Top属性设为一确定值)。 Anchors:可视控件的边界,在窗体大小变化时设置控件与窗体的某边距离不变。...(加速键是在该父菜单激活后才能使用,快捷键则可以直接使用) BitMap:为菜单项加图标 右键 Insert From Template:快速使用模版创建菜单项 Frames 可用于组合多个控件,动态生成多个控件集合...鼠标光标离开文本 OnClick:鼠标点击文本 OnChange:每次键盘输入 Panel Visible:可视性 TMemo ScrollBars:滚动条设置 TabStop:Tab键 WantTabs:制符表使用...可以作为某种自定义意义使用。 Columns:列表所显示的栏数 MultiSelect:是否支持多选 Sorted:是否按字母顺序进行排序 ItemIndex:列表中被选中选项的序号。...Flat:是否鼠标在突起显示,或作为普通按钮 Images:按钮的图像列表 DisableImages:按钮被禁用时的图像列表 HotImages:鼠标指向该按钮时的图像列表 ImageIndex:确定按钮显示的图像序号

    4.3K10

    几种交叉验证(cross validation)方式的比较

    ; 与原始的train_test_split相比,对数据的使用效率更高。...train_test_split,默认训练集、测试集比例为3:1,而对交叉验证来说,如果是5折交叉验证,训练集比测试集为4:1;10折交叉验证训练集比测试集为9:1。数据量越大,模型准确率越高!...为了避免这种情况,又出现了其他的各种交叉验证方式。...Stratified k-fold cross validation 分层交叉验证(Stratified k-fold cross validation):首先它属于交叉验证类型,分层的意思是说在每一折中都保持着原始数据中各个类别的比例关系...,比如说:原始数据有3类,比例为1:2:1,采用3折分层交叉验证,那么划分的3折中,每一折中的数据类别保持着1:2:1的比例,这样的验证结果更加可信。

    5.7K80

    汇总 | OpenCV DNN模块中支持的分类网络

    OpenCV DNN基于深度学习中的卷积神经网络技术实现对常见计算机视觉任务完成,这些支持模型的结构与相关的论文笔者做了汇总。今天这里汇总一下支持的图像分类模型。...01 GooLeNet 2014年提出,OpenCV DNN支持Caffe与tensorflow两个版本的模型加载。...相关论文如下: https://arxiv.org/pdf/1409.4842.pdf 两个Block结构单元 模型结构 02 AlexNet模型 卷积神经网络模型的开山之作,相关的论文: http:...block结构如下: 08 ShuffleNet 该网络最早在2017年提出,如今也更新到多个版本,从最早的V1版本到如今的V3版本,OpenCV DNN模型支持v1版本的图像分类,相关论文如下: https...OpenCV DNN加载与解析完成图像分类任务。

    1.2K10

    文本分类 - 样本不平衡的解决思路与交叉验证CV的有效性

    现实情况中,很多机器学习训练集会遇到样本不均衡的情况,应对的方案也有很多种。 笔者把看到的一些内容进行简单罗列,此处还想分享的是交叉验证对不平衡数据训练极为重要。.../Recall 1.5 使用相关模型 或调整预测概率 2 交叉验证CV的有效性 ---- 1 样本不平衡的解决思路 有好几篇原创知乎内容都很赞,不做赘述,参考: 严重数据倾斜文本分类,比如正反比1:20...常规的可以使用一些聚类 或 OneClassSVM(无监督︱异常、离群点检测 一分类——OneClassSVM) 常规的可参考文献 : 微调:数据挖掘中常见的『异常检测』算法有哪些?...或调整预测概率 不对数据进行过采样和欠采样,但使用现有的集成学习模型,如随机森林,输出随机森林的预测概率,调整阈值得到最终结果 ---- 2 交叉验证CV的有效性 但是如果你处于比赛阶段,如果是分类单一还可以...一般情况下,为了高效训练以及模型融合,一般情况下对不平衡不会做太大的采样操作。 对于分类体系较为复杂的文本分类任务,交叉验证的结果受不平衡数据,效果也有很大差异。

    2.1K20

    对交叉验证的一些补充(转)

    一个交叉验证将样本数据集分成两个互补的子集,一个子集用于训练(分类器或模型)称为训练集(training set);另一个子集用于验证(分类器或模型的)分析的有效性称为测试集(testing set)。...为了减少交叉验证结果的可变性,对一个样本数据集进行多次不同的划分,得到不同的互补子集,进行多次交叉验证。取多次验证的平均值作为验证结果。...或PRESS值不在变小时的主成分数 交叉验证的目的:假设分类器或模型有一个或多个未知的参数,并且设这个训练器(模型)与已有样本数据集(训练数据集)匹配。...训练的过程是指优化模型的参数,以使得分类器或模型能够尽可能的与训练数据集匹配。我们在同一数据集总体中,取一个独立的测试数据集。 常见类型的交叉验证: 1、重复随机子抽样验证。...将数据集随机的划分为训练集和测试集。对每一个划分,用训练集训练分类器或模型,用测试集评估预测的精确度。进行多次划分,用均值来表示效能。 优点:与k倍交叉验证相比,这种方法的与k无关。

    86690
    领券