首页
学习
活动
专区
圈层
工具
发布

使用VBA进行线性插值

标签:VBA 如果要在Excel工作表中针对相应数据进行线性插值计算,使用VBA如何实现? 如下图1所示,有3个值,要使用这3个值进行线性插值。 图1 结果如下图2所示。...图2 可以使用下面的VBA代码: Sub LinInterp() Dim rKnown As Range '已知数值的区域 Dim rGap As Range '插值区域 Dim dLow As...Double '最小值 Dim dHigh As Double '最大值 Dim dIncr As Double '增加值 Dim cntGapCells As Long '填充插值的单元格数...Dim iArea As Long '区域数变量 Dim iGap As Long '插值变量 '赋已知数组成的单元格区域给变量 Set rKnown = ActiveSheet.Columns...(1).SpecialCells(xlCellTypeConstants, xlNumbers) With rKnown '遍历已知道区域并将其值复制到相邻列插值区 For iArea =

57110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    利用griddata进行插值

    利用griddata进行插值 griddata函数讲解 第一步:导入相关库 第二步:给出插值到的经纬度信息(目标经纬度) 第三步:待插值数据 第四步:插值 汇总成函数 结果对比 插值前(10km) 插值后...(1km) 因为最近在做算法优化,所以对数据统一性有一定要求,在最近的研究中主要用一个简单的最近邻插值对数据集进行降尺度处理。...nc文件进行插值 ''' def interp2D(maskpath,mask_lon='lon',mask_lat='lat',inputpath='', outputpath='',data_lon...:outputpath: 插值完nc文件保存的路径,注意要是'/' :data_lon: 需要做插值数据经度名称,比如:'x','lon' :data_lat: 需要做插值数据经度名称,比如:'y',...开始对'+file+'进行插值') inputfile_interp = griddata(points, inputfile_values.ravel(),(mask_LON1,mask_LAT1

    1K20

    Swift入门: 字符串插值

    把你刚才写的代码全部清除,只留下这个: var name = "Tim McGraw" 如果我们想打印一条消息给包含他们姓名的用户,字符串插值就变得很简单:只需编写一个反斜杠、一个左括号、一个代码、一个右括号...,如下所示: var name = "Tim McGraw" "Your name is \(name)" 结果窗格现在将显示“Your name is Tim McGraw”全部为一个字符串,因为字符串插值为我们组合了这两个字符串...此外,Swift中的字符串插值非常聪明,能够自动处理各种不同的数据类型。...字符串插值的一个强大特性是\(和)之间的所有内容实际上都可以是一个完整的快速表达式。...例如,可以在其中使用运算符进行数学运算,如下所示: var age = 25 "You are \(age) years old.

    1.2K20

    python中griddata的外插值_利用griddata进行二维插值

    有时候会碰到这种情况: 实际问题可以抽象为 \(z = f(x, y)\) 的形式,而你只知道有限的点 \((x_i,y_i,z_i)\),你又需要局部的全数据,这时你就需要插值,一维的插值方法网上很多...,不再赘述,这里仅介绍二维的插值法 这里主要利用 scipy.interpolate 包里 griddata 函数 griddata(points, values, xi, method=’linear...xi:需要插值的空间,一般用 numpy.mgrid 函数生成后传入 method:插值方法 nearest linear cubic fill_value:无数据时填充数据 该方法返回的是和 xi 的...# 插值的目标 # 注意,这里和普通使用数组的维度、下标不一样,是因为如果可视化的话,imshow坐标轴和一般的不一样 x, y = np.mgrid[ end1:start1:step1 * 1j,...start2:end2:step2 * 1j] # grid就是插值结果,你想要的到的区间的每个点数据都在这个grid矩阵里 grid = griddata(points, values, (x, y)

    4.5K10

    使用griddata进行均匀网格和离散点之间的相互插值

    常见的一维插值很容易实现,相对来说,要实现较快的二维插值,比较难以实现。这里就建议直接使用scipy 的griddata函数。...det_grid,det_grid), np.arange(lat_min,lat_max+det_grid,det_grid)) #step3:进行网格插值...3 均匀网格插值到离散点 在气象上,用得更多的,是将均匀网格的数据插值到观测站点,此时,也可以逆向使用 griddata方法插值;这里就不做图显示了。...使用griddata进行插值 inputs: all_data,形式为:[grid_lon,grid_lat,data] 即[经度网格,纬度网格,数值网格] station_lon: 站点经度 station_lat...可以是 单个点,列表或者一维数组 method: 插值方法,默认使用 cubic ''' station_lon = np.array(station_lon).reshape(-1,1)

    3K21

    ArcGIS Pro对温度值进行经验贝叶斯克里金插值

    这次使用的实验数据非自己做的,自己对此做了一些修改以更好地理解和记忆,特别是有翻译不准确地地方,总是会让我们读起来感觉怪怪地。理解自己所做任务地数据格式和排列方式来进行相关的分析是重要的。...这次实验记录是使用ArcGIS Pro软件对温度值进行经验贝叶斯克里金插值,使用到的数据形式是这样的,温度单位是华氏度,因为数据不是我自己做的,我自己做的话肯定是用deg C了。 ?...数据的结构也看到了,那么下一步就是准备使用经验贝叶斯克里金插值。 首先,在分析菜单下选择地统计向导,进入界面 ? ?...经验贝叶斯克里金插值方法(EBK)是在一般克里金插值方法的基础上开发出来,所以我们的直觉是,EBK的精度更高。那么我们就可以通过两者的计算结果进行一个对比来具体看看 ?...最后,来看看径向基插值的结果,同样在地统计向导那里打开这个窗口 ? ? Fig.3 RBF温度插值结果 具体对比他们之间的效果就慢慢去了解了。 当然,也可以看看反距离权重插值法: ?

    3.4K20

    .NET6新东西--插值字符串优化

    字符串是我们平时使用最多的一个类型,从C#6开始就支持插值字符串,方便我们进行字符串的操作,并且大部分分析器也推荐使用插值这种写法,因为它够使得我们的代码更加清晰简洁,到了.NET6中的C#10则为我们提供了更好的实现方式以及更佳的性能...那么什么是插值字符串呢?...它是以符开头的,类似于 “Hello {name}” 这样的字符串,下面的例子是插值字符串的简单使用: var name = "插值字符串"; var hello = $"你好 {name}!"...这里需要注意的是插值字符串格式化的时候会使用当前的CultureInfo,如果我们需要使用不同的CultureInfo或手动指定CultureInfo,那么可以使用FormattableString或FormattableStringFactory...其实还有一个特殊的参数,我们可以在构造方法中引入一个bool类型的out参数,如果值为false则不会进行字符串的拼接,我们再次改造一下前面的代码: public CustomInterpolatedStringHandler

    1.4K30

    jquery获得option的值和对option进行操作

    jquery获取Select元素,并选择的Text和Value:  $("#select_id").change(function(){//code...}); //为Select添加事件,当选择其中一项时触发...var maxIndex=$("#select_id option:last").attr("index"); //获取Select最大的索引值 jquery获取Select元素,并设置的 Text和Value...Value值为4的项选中 $("#select_id option[text='jQuery']").attr("selected", true); //设置Select的Text值为jQuery的项选中...=0]").remove(); }//这个表示:假如我们希望当选择选择第三类时:如果第四类中有数据则删除,如果没有数据第四类的商品中的为默认值。在后面学习了AJAX技术后经常会使用到!...$("#ddlRegType ").empty();  jquery获得值: val()  text()  设置值  val('在这里设置值')  $("document").ready

    4.3K10

    stata对包含协变量的模型进行缺失值多重插补分析

    p=6358 多重插补已成为处理缺失数据的常用方法 。 我们可以考虑使用多个插补来估算X中的缺失值。接下来的一个自然问题是,在X的插补模型中,变量Y是否应该作为协变量包含在内?...输入X忽略Y 假设我们使用回归模型来估算X,但是在插补模型中不包括Y作为协变量。...我们可以在Stata中轻松完成此操作,为每个缺失值生成一个估算值,然后根据X的结果推算值或观察到的X(当观察到它时)绘制Y: mi impute reg x,add(1) ?...将结果考虑在内的 假设如果我们反过来将X结果考虑为Y(作为X的插补模型中的协变量),则会发生以下步骤。X | Y的插补模型将使用观察到X的个体来拟合。...要继续我们的模拟数据集,我们首先丢弃之前生成的估算值,然后重新输入X,但这次包括Y作为插补模型中的协变量: mi impute reg x = y,add(1) Y对X,其中使用Y估算缺失的X值 多重插补中的变量选择

    2.9K20
    领券