首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用pandas对多个映射的货币列进行操作

,可以通过使用pandas的map函数来实现。map函数可以根据一个字典或者一个Series对象将一列中的值进行映射转换。

首先,我们需要创建一个字典,将每个货币与其对应的汇率进行映射。例如,我们可以创建一个名为exchange_rate的字典,将美元、欧元和人民币与对应的汇率进行映射:

代码语言:txt
复制
exchange_rate = {'美元': 6.4, '欧元': 7.8, '人民币': 1}

接下来,假设我们有一个名为df的DataFrame对象,其中包含了一个名为货币的列,表示不同的货币类型。我们可以使用map函数将货币列中的值根据exchange_rate字典进行映射转换:

代码语言:txt
复制
df['汇率'] = df['货币'].map(exchange_rate)

上述代码将会在df中创建一个名为汇率的新列,其中的值是根据货币列中的值通过exchange_rate字典进行映射转换得到的。

除了使用字典进行映射转换外,我们还可以使用一个Series对象来进行映射转换。例如,我们可以创建一个名为exchange_rate_series的Series对象,将货币类型作为索引,对应的汇率作为值:

代码语言:txt
复制
exchange_rate_series = pd.Series([6.4, 7.8, 1], index=['美元', '欧元', '人民币'])

然后,我们可以使用map函数将货币列中的值根据exchange_rate_series进行映射转换:

代码语言:txt
复制
df['汇率'] = df['货币'].map(exchange_rate_series)

通过上述操作,我们可以将多个映射的货币列进行操作,将货币类型转换为对应的汇率值,并将结果存储在一个新的列中。

在腾讯云的产品中,与数据处理和分析相关的产品有腾讯云数据湖分析(Data Lake Analytics,DLA)和腾讯云数据仓库(TencentDB for TDSQL)。这些产品可以帮助用户在云端进行大规模数据的存储、处理和分析,提供了强大的数据处理能力和灵活的数据分析工具。

腾讯云数据湖分析(DLA):https://cloud.tencent.com/product/dla 腾讯云数据仓库(TencentDB for TDSQL):https://cloud.tencent.com/product/tdsql

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python Pandas 进行选择,增加,删除操作

一、操作 1.1 选择 d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2..., 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print (df ['one']) # 选择其中一进行显示,长度为最长列长度...,其中 index 用于对应到该 元素 位置(所以位置可以不由 列表 中顺序进行指定) print ("Adding a new column using the existing columns...in DataFrame:") df['four']=df['one']+df['two']+df['three'] print(df) # 我们选定后,直接可以对整个元素进行批量运算操作,这里.../行进行选择,增加,删除操作文章就介绍到这了,更多相关Python Pandas行列选择增加删除内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

3.2K10

Pandas 中三个转换操作

前言 本文主要介绍三个转换操作: split 按分隔符将分割成多个 astype 转换列为其它类型 将对应列上字符转换为大写或小写 创建 DataFrame 首先,导入 Pandas 模块...df_dev 中已经存在来创建 df_dev 索引; "dev_id" 为索引命名; inplcae = True 为原地操作,也就是说此次修改不会创建新对象。...split 按分隔符将分割成多个 现在我们想要将 name 划分成两个,其中一个列为 first_name,另外一个列为 last_name。...,全名为 Series.str.split,它可以根据给定分隔符 Series 对象进行划分; " " 按照空格划分,我们可以传入字符串或者正则表达式,如果不指定则按照空格进行划分; n = 1 分割数量...astype 转换列为其它类型 我们可以使用 astype() 将 age 转换为字符串类型,将 salary 转换为浮点型。

1.2K20
  • python中pandas库中DataFrame行和操作使用方法示例

    w'使用类字典属性,返回是Series类型 data.w #选择表格中'w'使用点属性,返回是Series类型 data[['w']] #选择表格中'w',返回是DataFrame...#利用index值进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...'d','e']) data Out[7]: a b c d e one 0 1 2 3 4 two 5 6 7 8 9 three 10 11 12 13 14 #操作方法有如下几种...,至于这个原理,可以看下前面的操作。...github地址 到此这篇关于python中pandas库中DataFrame行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    使用Pandas完成data数据处理,按照数据中元素出现先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data元素,按照它们出现先后顺序进行分组排列,结果如new中展示...new列为data分组排序后结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示这个方法和上面两个方法思路是一样...八仙过海,神仙操作,简直太强了! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了使用Pandas完成data数据处理,按照数据中元素出现先后顺序进行分组排列问题,文中针对该问题给出了具体解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,

    2.3K10

    使用sklearn多分类每个类别进行指标评价操作

    今天晚上,笔者接到客户一个需要,那就是:多分类结果每个类别进行指标评价,也就是需要输出每个类型精确率(precision),召回率(recall)以及F1值(F1-score)。...使用sklearn.metrics中classification_report即可实现多分类每个类别进行指标评价。...,输出结果数据类型为str,如果需要使用该输出结果,则可将该方法中output_dict参数设置为True,此时输出结果如下: {‘北京': {‘precision': 0.75, ‘recall...fit,找到该part整体指标,如均值、方差、最大值最小值等等(根据具体转换目的),然后该partData进行转换transform,从而实现数据标准化、归一化等等。。...值 print ("xgb_muliclass_auc:",test_auc2) 以上这篇使用sklearn多分类每个类别进行指标评价操作就是小编分享给大家全部内容了,希望能给大家一个参考。

    5.1K51

    跟着Nature Genetics学作图:使用ggarrange函数ggplot2多个进行组合

    /zenodo.org/record/6332981#.YroV0nZBzic https://github.com/Jingning-Zhang/PlasmaProtein/tree/v1.2 今天推文重复一下论文中...Figure1,涉及到5个图,分别是折线图,韦恩图,散点图,频率分布直方图,最后一个知识点是如何将这5个图组合到一起 image.png 首先是定义作图主题内容 library(ggplot2)...panel.background = element_blank(), title = element_text(size = 7), text = element_text(size = 6) ) 论文中提供代码没有设置坐标轴线...,如果按照他主题来做出图没有横纵坐标轴 第一个折线图代码 library(readxl) df.peer <- read_excel("data/20220627/Fig1.xlsx", sheet...他这里韦恩图是借助ggforce这个R包直接画了两个圆 df.venn <- read_excel("data/20220627/Fig1.xlsx", sheet = "1b") library

    2.5K11

    怎么直接未展开数据表进行筛选操作?含函数嵌套使用易错点。

    小勤:Power Query里,怎么对表中表数据进行筛选啊? 大海:你想怎么筛选? 小勤:比如说我只要下面每个表里单价大于10部分: 大海:这么标准数据和需求,直接展开再筛选就是了啊。...小勤:能在不展开数据表情况下筛选吗?因为有时候筛选不会这么简单啊。 大海:当然是可以。...因为你可以通过表(Table)相关函数分别针对每一个表进行,比如筛选行可以用Table.SelectRows,筛选可以用Table.SelectColumns……可以非常灵活地组合使用。...你在外面这个表里哪里有“数量”这一? 小勤:外面这个表?Table.SelectRows不是引用了“订单明细”那一每个表吗? 大海:嗯。...所以,你想一下,如果你外面大表里也有一叫“单价”,那,你说这个公式里这个单价,指的是谁呢?比如这样: 小勤:这个的确有点儿乱。那改怎么改呢?

    1.4K40

    Pandas 数据类型概述与转换实战

    进行数据分析时,确保使用正确数据类型是很重要,否则我们可能会得到意想不到结果或甚至是错误结果。...本文将讨论基本 pandas 数据类型(又名 dtypes ),它们如何映射到 python 和 numpy 数据类型,以及从一种 pandas 类型转换为另一种方法 Pandas 数据类型 数据类型本质上是编程语言用来理解如何存储和操作数据内部结构...看起来很简单,让我们尝试 2016 做同样事情,并将其转换为浮点数: 同样,转换 Jan Units 转换异常了~ 上面的情况中,数据中包含了无法转换为数字值。...我们需要进行额外转换才能使类型更改正常工作 自定义转换函数 由于此数据转换有点复杂,我们可以构建一个自定义函数,将其应用于每个值并转换为适当数据类型 对于(这个特定数据集货币转换,我们可以使用一个简单函数...这两者都可以简单地使用内置 pandas 函数进行转换,例如 pd.to_numeric() 和 pd.to_datetime() Jan Units 转换存在问题原因是中包含非数字值。

    2.4K20

    Pandas

    使用Z-Score等统计方法识别并移除异常值。 统一数据格式: 确保所有数据具有相同格式,例如统一日期格式、货币格式等。...agg()是aggregate()简写别名,可以在指定轴上使用一个或多个操作进行聚合。...例如,整个DataFrame进行汇总: agg_result = df.agg (['mean', 'sum']) print(agg_result) 这种方式非常适合需要同时多个进行多种聚合操作场景...这些数据结构可以用来处理不同类型和形式数据,并且可以进行索引和切片操作,方便数据处理和操作。 强大数据处理能力:Pandas能够不同类型、大小和形状数据进行灵活处理。...相比之下,NumPy主要关注数值计算和科学计算问题,其自身有较多高级特性,如指定数组存储行优先或者优先、广播功能以及ufunc类型函数,从而快速不同形状矩阵进行计算。

    7210

    Pandas 高级教程——自定义函数与映射

    自定义函数应用 4.1 使用 apply 方法 apply 方法允许你使用自定义函数 DataFrame 或行进行操作。...'] = df['Age'].apply(add_five) 4.2 使用匿名函数 也可以使用匿名函数进行类似的操作: # 使用匿名函数 'Salary' 进行操作 df['Salary_Doubled...例如,我们将姓名映射为姓名长度: # 使用 map 方法进行映射 df['Name_Length'] = df['Name'].map(len) 5.2 使用字典进行映射 通过字典,可以实现更复杂映射操作...多映射 如果需要对多进行映射操作,可以使用 applymap 方法: # 整个 DataFrame 进行映射 df[['Name_Length', 'Salary_Category']] = df...总结 通过本篇博客学习,你应该 Pandas自定义函数和映射操作有了更深入理解。这些功能可以让你更灵活地处理和转换数据,适应不同业务需求。

    34710

    不再纠结,一文详解pandasmap、apply、applymap、groupby、agg...

    一、简介 pandas提供了很多方便简洁方法,用于单列、多数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析效率,也会使得你代码更加地优雅简洁。...二、非聚合类方法 这里非聚合指的是数据处理前后没有进行分组操作,数据长度没有发生改变,因此本章节中不涉及groupby()。...譬如这里我们想要得到genderF、M转换为女性、男性,可以有以下几种实现方式: 字典映射 这里我们编写F、M与女性、男性之间一一映射字典,再利用map()方法来得到映射: #定义F->女性...三、聚合类方法 有些时候我们需要像SQL里聚合操作那样将原始数据按照某个或某些离散型进行分组再求和、平均数等聚合之后值,在pandas中分组运算是一件非常优雅事。...,v2进行中位数、最大值、最小值操作

    5K10

    (数据科学学习手札69)详解pandasmap、apply、applymap、groupby、agg

    ,用于单列、多数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析效率,也会使得你代码更加地优雅简洁,本文就将针对pandasmap()、apply()、applymap()、...二、非聚合类方法   这里非聚合指的是数据处理前后没有进行分组操作,数据长度没有发生改变,因此本章节中不涉及groupby(),首先读入数据,这里使用全美婴儿姓名数据,包含了1880-2018...三、聚合类方法   有些时候我们需要像SQL里聚合操作那样将原始数据按照某个或某些离散型进行分组再求和、平均数等聚合之后值,在pandas中分组运算是一件非常优雅事。...,键为变量名,值为对应聚合函数字符串,譬如{'v1':['sum','mean'], 'v2':['median','max','min]}就代表对数据框中v1进行求和、均值操作v2进行中位数...、最大值、最小值操作,下面用几个简单例子演示其具体使用方式:  ● 聚合Series   在对Series进行聚合时,因为只有1,所以可以不使用字典形式传递参数,直接传入函数名列表即可: #求count

    5K60

    不再纠结,一文详解pandasmap、apply、applymap、groupby、agg...

    二、非聚合类方法 这里非聚合指的是数据处理前后没有进行分组操作,数据长度没有发生改变,因此本章节中不涉及groupby()。...譬如这里我们想要得到genderF、M转换为女性、男性,可以有以下几种实现方式: 字典映射 这里我们编写F、M与女性、男性之间一一映射字典,再利用map()方法来得到映射: #定义F->女性...但相较于map()针对单列Series进行处理,一条apply()语句可以对单列或多进行运算,覆盖非常多使用场景。...三、聚合类方法 有些时候我们需要像SQL里聚合操作那样将原始数据按照某个或某些离散型进行分组再求和、平均数等聚合之后值,在pandas中分组运算是一件非常优雅事。...,v2进行中位数、最大值、最小值操作

    5.3K30

    玩转Pandas,让数据处理更easy系列6

    ,让数据处理更easy系列5 实践告诉我们Pandas主要类DataFrame是一个二维结合数组和字典结构,因此行、而言,通过标签这个字典key,获取对应行、,而不同于Python,...分和合按照字面理解就可,但是“治”又是怎么理解,进一步将治分为3件事: 聚合操作,比如统计每组个数,总和,平均值 转换操作每个组进行标准化,依据其他组队个别组NaN值填充 过滤操作,忽略一些组...04 分(splitting) 分组就是根据默认索引映射为不同索引取值分组名称,来看如下所示DataFrame实例df_data,可以按照多种方式它分组,直接调用groupby接口, ?...06 治:分组上操作 对分组上操作,最直接使用aggregate操作,如下,求出每个分组上对应列总和,大家可以根据上面的分组情况,对应验证: agroup = df.groupby('A')...还可以对不同列调用不同函数,详细过程在参考官方文档: http://pandas.pydata.org/pandas-docs/stable/groupby.html 还可以进行一些转化和过滤操作

    2.7K20

    【python】数据挖掘分析清洗——离散化方法汇总

    这里我将离散化分为两大类别,数值型数据离散化,字符数据离散化一、字符数据离散化将字符离散化,是为了后续数据清洗能够正常进行,因为带有字符数据无法进行很多数据清洗操作,这里以数据'报告类型','会计准则...','货币代码',作为举例,进行说明。...# 可以通过labels自定义箱名或者区间名 用于多个进行划分group_names = ['Youth', 'YonngAdult', 'MiddleAged', 'Senior']data = pd.cut...取决于数据分布,使用cut不会使每个箱子具有相同数据数量数据点,而qcut,使用# 样本分位数,可以获得等长箱data3 = np.random.randn(1000) # 正太分布cats...,然后将数据映射到对应区间中。

    53330

    数据导入与预处理-第6章-02数据变换

    基于值重塑数据(生成一个“透视”表)。使用来自指定索引/唯一值来形成结果DataFrame轴。此函数不支持数据聚合,多个值将导致MultiIndex。...pivot_table透视过程如下图: 假设某商店记录了5月和6月活动期间不同品牌手机促销价格,保存到以日期、商品名称、价格为标题表格中,若该表格商品名称进行轴向旋转操作,即将商品名称一唯一值变换成索引...实现哑变量方法: pandas使用get_dummies()函数类别数据进行哑变量处理,并在处理后返回一个哑变量矩阵。...,可以熟练地使用过该函数实现面元划分操作 面元划分是指数据被离散化处理,按一定映射关系划分为相应面元(可以理解为区间),只适用于连续数据。...pandas使用cut()函数能够实现面元划分操作,cut()函数会采用等宽法对连续型数据进行离散化处理。

    19.3K20

    Python数据分析 | Pandas数据变换高级函数

    ,大部分情况下都会使用Pandas进行操作。...下面我们通过图解方式,拆解map操作过程: (1)使用字典映射map原理 #①使用字典进行映射 data["gender"] = data["gender"].map({"男":1, "女":0}...[a200e4689da469674cc96536057dd442.png] 我们来通过例子理解一下这个方法使用。例如,我们data中数值分别进行取对数和求和操作。...这时使用apply进行相应操作,两行代码可以很轻松地解决。 (1)按求和实现过程 因为是进行操作,所以需要指定axis=0。本次实现底层,apply到底做了什么呢?....png] (2)按取对数实现过程 因为是进行操作,所以需要指定axis=0。

    1.4K31

    Pandas数据显示不全?快来了解这些设置技巧! ⛵

    Pandas 数据显示问题图片我们在应用 Python 进行数据分析挖掘和机器学习时,最常用工具库就是 Pandas,它可以帮助我们快捷地进行数据处理和分析。...图片 Pandas 不熟悉同学,一定要学习下这个宝藏工具库哦!ShowMeAI 给大家做了一个详尽教程,可以在 ? Python 数据分析教程 中查看,我们同时也制作了 ?...但是大家需要注意一下内存使用,这个操作可能让 Jupyter Notebook 一下占用特别多资源)。...pd.set_option("display.max_colwidth", 70)df图片这个设置重置操作依旧是pd.reset_option("display.max_colwidth")。?...pd.set_option("display.float_format", "{:.2f}".format)df图片这个设置重置操作是 pd.reset_option("display.float_format

    3K61
    领券