首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Stack Overflow 调查显示:80.8%的Developers 把写代码当做人生的爱好

    Stack Overflow是开发人员学习,分享他们的编程知识并建立他们的职业生涯的最大,最值得信赖的在线社区。每年,Stack Overflow会向开发人员社区询问从他们最喜爱的技术到他们的工作偏好的所有内容。今年是发布年度开发者调查结果的第八年,也是受访者数量最多的一年。 2018年1月,超过100,000名开发人员参加了30分钟的调查。 今年,报道了一些新的主题,从人工智能到编码伦理。还发现,技术中代表性不足的群体对我们的调查的回应率比我们预期他们参与劳动力队伍的速度更低。想要自己钻研结果,看看你可以学到关于薪水,机器学习或科技多样性的知识吗?期待看到您的发现!

    02

    数学建模五个步骤_思考问题的五步方法

    第一步是提出问题,即对遇到的实际问题使用恰当的数学语言进行表达。一般而言,首要任务是对术语进行定义。无论是实际问题涉及到的变量,还是这些变量的单位、相关假设,都应当用等式或者不等式进行表达。在这一基础上,我们就可以用数学语言对实际问题进行转述,并构成完整的问题。其中变量与参量的区别是很重要的,需要区分开来。完成第一步之后,可以归纳得到一个包含变量、假设、目标的列表。列表中可以清楚明显地看出问题包含的变量,由题目得到的关系式,以及目标。判断第一步是否成功完成的主要依据便是,目标能否转化为某一变量的函数。

    02

    每日论文速递 | UCB提出RAFT-检索增强微调训练方法

    摘要:在大型文本数据集上预训练大型语言模型(LLM)现已成为一种标准模式。在许多下游应用中使用这些 LLM 时,通常会通过基于 RAG 的提示或微调将新知识(如时间关键新闻或私人领域知识)添加到预训练模型中。然而,模型获取此类新知识的最佳方法仍是一个未决问题。在本文中,我们提出了检索增强微调法Retrieval Augmented FineTuning(RAFT),这是一种训练方法,可提高模型在 "开卷 "领域设置中回答问题的能力。在 RAFT 中,给定一个问题和一组检索到的文档,我们训练模型忽略那些无助于回答问题的文档,我们称之为干扰文档。RAFT 通过逐字引用相关文档中有助于回答问题的正确序列来实现这一点。这与 RAFT 的思维链式响应相结合,有助于提高模型的推理能力。在特定领域的 RAG 中,RAFT 持续提高了模型在 PubMed、HotpotQA 和 Gorilla 数据集上的性能,为改进预训练 LLM 的域内 RAG 提供了一个后训练配方。RAFT 的代码和演示已开源。

    02

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券