首页
学习
活动
专区
圈层
工具
发布

在Debian 8上使用Apt-Get安装Java

介绍 编程语言Java和Java虚拟机或JVM被广泛使用并且需要用于多种软件。 本教程提供了在Debian 8上安装Java的不同方法。 准备 要学习本教程,您需要: 一个Debian 8服务器。...$ sudo apt-get update 接下来,安装Java。具体来说,此命令将安装Java运行环境(JRE)。...为了确保我们在Debian上获得正确的源代码行,我们需要运行以下命令来修改该行: $ sudo add-apt-repository "deb http://ppa.launchpad.net/webupd8team...结论 您现在已经安装了Java并知道如何管理它的不同版本。您现在可以安装在Java上运行的软件,例如Tomcat,Jetty,Glassfish,Cassandra或Jenkins。...如果您需要在其他平台上安装JAVA,您也可以参考腾讯云社区在Ubuntu 18.04上安装Java和CentOS 安装 JAVA 1.8的相关教程。

5.7K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    BigData | Apache Beam的诞生与发展

    再到后来,优秀的Google工程师们觉得可以把上面的FlumeJava以及Millwheel整合在一起,因此提出了Dataflow Model的思想,也推出了基于这个思想开发的平台Cloud Dataflow...因此,Google就在2016年联合几家大数据公司,基于Dataflow Model的思想开发出了一套SDK,并贡献到了Apache Software Foundation,并且命名为Beam,Beam...使得工程师写好的算法逻辑与底层运行环境分隔开,即直接使用Beam提供的API就可以直接放在任何支持Beam API的底层系统上运行。...这可以用累积模式来解决,常见的累积模式有:丢弃(结果之间是独立且不同的)、累积(后来的结果建立在之前的结果上)等等。...Beam的编程模型将所有的数据处理逻辑都分割成上述的4个维度,所以我们在基于Beam SDK构建数据处理业务逻辑时,只需要根据业务需求,按照这4个维度调用具体的API即可。 ?

    1.7K10

    谷歌宣布开源 Apache Beam,布局下一代大数据处理平台

    这些代码的大部分来自谷歌的 Cloud Dataflow SDK,是开发者用来编写流处理(streaming)和批处理管道(batch pinelines)的库,可以在任何支持的执行引擎上运行。...这里引用来自 Apache 孵化器副总裁 Ted Dunning 的一段评价: “在我的日常工作,以及作为在 Apache 的工作的一部分,我对 Google 真正理解如何利用 Apache 这样的开源社区的方式非常感佩...在系统易用性上,Angel 提供丰富的机器学习算法库及高度抽象的编程接口、数据计算和模型划分的自动方案及参数自适应配置,同时,用户能像使用MR、Spark一样在Angel上编程, 还建设了拖拽式的一体化的开发运营门户...Google是一个企业,因此,毫不奇怪,Apache Beam 移动有一个商业动机。这种动机主要是,期望在 Cloud Dataflow上运行尽可能多的 Apache Beam 管道。...打开平台有许多好处: Apache Beam 支持的程序越多,作为平台就越有吸引力 Apache Beam的用户越多,希望在Google Cloud Platform上运行Apache Beam的用户就越多

    1.4K80

    大数据凉了?No,流式计算浪潮才刚刚开始!

    在 Google 内部,之前本书中讨论过的大多数高级流处理语义概念首先被整合到 Flume 中,然后才进入 Cloud Dataflow 并最终进入 Apache Beam。...图 10-33 Apache Beam 的时间轴 具体而言,Beam 由许多组件组成: 一个统一的批量加流式编程模型,继承自 Google DataFlow 产品设计,以及我们在本书的大部分内容中讨论的细节...Beam 目前提供 Java,Python 和 Go 的 SDK,可以将它们视为 Beam 的 SQL 语言本身的程序化等价物。...Beam 目前提供了一个名为 Scio 的 Scala DSL 和一个 SQL DSL,它们都位于现有 Java SDK 之上。 一组可以执行 Beam Pipeline 的执行引擎。...尽管最终目标尚未完全完成(但即将面市),让 Beam 在 SDK 和引擎适配之间提供足够高效的抽象层,从而实现 SDK 和引擎适配之间的任意切换。

    1.7K60

    Apache Beam研究

    介绍 Apache Beam是Google开源的,旨在统一批处理和流处理的编程范式,核心思想是将批处理和流处理都抽象成Pipeline、Pcollection、PTransform三个概念。...Apache Beam本身是不具备计算功能的,数据的交换和计算都是由底层的工作流引擎(Apache Apex, Apache Flink, Apache Spark, and Google Cloud...Dataflow)完成,由各个计算引擎提供Runner供Apache Beam调用,而Apache Beam提供了Java、Python、Go语言三个SDK供开发者使用。...Apache Beam时,需要创建一个Pipeline,然后设置初始的PCollection从外部存储系统读取数据,或者从内存中产生数据,并且在PCollection上应用PTransform处理数据(...如何设计Apache Beam的Pipeline 在官方文档中给出了几个建议: Where is your input data stored?

    1.7K10

    Apache Beam 大数据处理一站式分析

    PCollection 3.1 Apache Beam 发展史 在2003年以前,Google内部其实还没有一个成熟的处理框架来处理大规模数据。...在2015年的时候,Google公布了Dataflow Model论文,同时也推出了基于 Dataflow Model 思想的平台 Cloud Dataflow,让 Google 以外的工程师们也能够利用这些...在2016年的时候,Google基于要在多平台运行程序的契机,联合Talend、Data Artisans、Cloudera 这些大数据公司,基于 Dataflow Model 的思想开发出了一套 SDK...而它 Apache Beam 的名字是怎么来的呢?就如文章开篇图片所示,Beam 的含义就是统一了批处理和流处理的一个框架。现阶段Beam支持Java、Python和Golang等等。 ?...在实现上,Beam是有window来分割持续更新的无界数据,一个流数据可以被持续的拆分成不同的小块。

    2K40

    流计算平台深度评测:谁才是算子库之王?腾讯云Oceanus凭何突围?

    当前主流厂商中: Apache Flink社区版:提供基础算子(窗口/聚合/连接器),需手动扩展 AWS Kinesis:内置200+预置连接器,但深度定制成本高昂 Google Dataflow:强化机器学习算子...Dataflow Google 40+ Beam模型支持、BigQuery无缝衔接 $275...Flink生态,提供: 基础算子:12类标准算子(窗口/聚合/Join等) 行业算子:金融反欺诈规则引擎、IoT时序分析插件 AI算子:TensorFlow/PyTorch模型推理组件 扩展能力:支持Java.../Scala自定义开发,SDK覆盖主流语言 2....企业级生产力工具 智能诊断:自动识别数据倾斜、热点Key等问题 全链路监控:毫秒级延迟指标采集 混合云架构:支持本地Flink集群与公有云无缝协同 结语 在流计算技术快速迭代的今天,企业选择平台不仅是购买一项服务

    11810

    Apache Beam实战指南 | 玩转KafkaIO与Flink

    面对这种情况,Google 在 2016 年 2 月宣布将大数据流水线产品(Google DataFlow)贡献给 Apache 基金会孵化,2017 年 1 月 Apache 对外宣布开源 Apache...在最近Flink的线下技术会议上,阿里巴巴的人已经回答了这一问题。其实很多技术都是从业务实战出来的,随着业务的发展可能还会有更多的计算平台出现,没有必要对此过多纠结。...它确保写入接收器的记录仅在Kafka上提交一次,即使在管道执行期间重试某些处理也是如此。重试通常在应用程序重新启动时发生(如在故障恢复中)或者在重新分配任务时(如在自动缩放事件中)。...存储在Kafka上的状态元数据,使用sinkGroupId存储在许多虚拟分区中。一个好的经验法则是将其设置为Kafka主题中的分区数。...在Apache Beam中对Flink 的操作主要是 FlinkRunner.java,Apache Beam支持不同版本的flink 客户端。

    4.3K20

    听程序员界郭德纲怎么“摆”大数据处理

    这时批流一体化的新贵Flink应运而生;同时Spark也在不断弥补自己在实时流处理上的短板,增加新特性;而Google也在不断发力,推出Apache Beam。...2016年,Google联合Talend、Cloudera等大数据公司,基于Dataflow Model思想开发出一套SDK,Apache Beam(Batch + Streaming),其含义就是统一了批处理和流处理的一个框架...它将工程师写的算法逻辑和底层运行的环境分隔开,即使用Beam提供的API写好数据处理逻辑后,这个逻辑可以不做任何修改,直接放到任何支持Beam API的底层系统上运行,如Google Cloud Dataflow...在Beam上,这些底层运行的系统被称为Runner,Beam提供了Java、Python、Golang的SDK,支持多语言编写程序。...但是Dataflow Model的程序需要运行在Google的云平台上,如何才能在其它的平台商跑起来呢,所以为了解决这个问题,才有了Apache Beam的诞生 ?

    1.1K20
    领券