首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言从入门到精通:Day13

图6,poisson回归分析结果 ? 同样,还需要评价泊松模型的过度离势。泊松分布的方差和均值相等。当响应变量观测的方差比依据泊松分布预测的方差大时,泊松回归可能发生过度离势。...在解决过度离势问题之前,推荐另一个检验poisson回归的过度离势的方法,即qcc包中的函数qcc.overdispersion.test(),这个函数的结果也说明这个回归模型确实存在过度离势的问题。...图7中是修改参数之后的回归模型,所得的回归系数估计与泊松方法相同,但标准误变大了许多。此处,标准误越大将会导致Trt(和Age)的p值越大于0.05。...同样的poisson回归也有很多扩展的形式,如时间段变化的poisson回归(需要使用glm()函数中的offset选项)、零膨胀的泊松回归(pscl包中的函数zeroinfl()可做零膨胀泊松回归)、...稳健泊松回归(robust包中的函数glmRob()可以拟合稳健广义线性模型,包含稳健泊松回归,当存在离群点和强影响点时,该方法会很有效。)。

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    广义线性模型应用举例之泊松回归及R计算

    前文在使用一般线性模型探索可能影响R. cataractae丰度的环境因素的过程中,最后发现acre(流域面积)、depth(水域深度)和no3(硝酸盐浓度)的增加有助于R. cataractae丰度的提升...在这个示例数据中,观察到响应变量R. cataractae丰度分布右偏而大致呈现泊松分布,提示使用泊松回归(广义线性模型)可能比线性回归(一般线性模型)更有效。...本示例直接使用基础包函数glm()作简单展示。 首先不妨使用全部环境变量拟合与R. cataractae丰度的多元泊松回归,本次计算过程中暂且忽略离群值以及多重共线性等的影响。...既然do2(水域溶解氧含量)和so4(水域硫酸盐浓度)不显著,不妨将它们从原回归模型中去除,使用剩余的环境变量重新拟合准泊松回归以简化模型,并重新解释在排除do2和so4协变量的情况下,各个环境变量对R...排除了do2(水域溶解氧含量)和so4(水域硫酸盐浓度)作为协变量影响后的新的准泊松回归模型中,进而发现temp(水域温度)不具有效应。

    9K44

    基于R语言混合效应模型(mixed model)案例研究

    这些影响是“固定的”,因为无论我在何处,如何采样或采样了多少只黄蜂,我在相同变量中仍将具有相同的水平:相同的菌落与不同的菌落,以及早季与晚季。 但是,还有两个其他变量在样本之间不会保持固定。...交叉随机效应的形式为(1 | r1)+(1 | r2)...,而嵌套随机效应的形式为(1 | r1 / r2)。 在这里,您可以指定混合模型将使用最大似然还是受限最大似然来估计参数。...问题在于,存在许多替代的估算方法,每种估算方法都使用不同的R包运行,并且很难确定哪种方法合适。 首先,我们需要测试是否可以使用惩罚拟似然(PQL)。...所有模型都对数据中方差的分布进行假设,但是在贝叶斯方法中,这些假设是明确的,因此我们需要指定这些假设的分布。在贝叶斯统计中,我们称这些 _先验_。...但是在第二个模型中,对年的置信区间明显较小,说明这个估计更好。

    2.7K10

    R语言混合效应模型(mixed model)案例研究|附代码数据

    p=2596 在本文中,我们描述了灵活的竞争风险回归模型。回归模型被指定为转移概率,也就是竞争性风险设置中的累积发生率 1.混合模型是否适合您的需求? 混合模型在很多方面与线性模型相似。...这些影响是“固定的”,因为无论我在何处,如何采样或采样了多少只黄蜂,我在相同变量中仍将具有相同的水平:相同的菌落与不同的菌落,以及早季与晚季。 但是,还有两个其他变量在样本之间不会保持固定。...请注意,负二项式和伽马分布只能处理正数,而泊松分布只能处理正整数。二项分布和泊松分布与其他分布不同,因为它们是离散的而不是连续的,这意味着它们可以量化不同的,可数的事件或这些事件的概率。...交叉随机效应的形式为(1 | r1)+(1 | r2)...,而嵌套随机效应的形式为(1 | r1 / r2)。 在这里,您可以指定混合模型将使用最大似然还是受限最大似然来估计参数。...问题在于,存在许多替代的估算方法,每种估算方法都使用不同的R包运行,并且很难确定哪种方法合适。 首先,我们需要测试是否可以使用惩罚拟似然(PQL)。

    1.3K20

    R语言逻辑回归、方差分析 、伪R平方分析

    p=9589 ---- 目录 怎么做测试 假设条件 并非所有比例或计数都适用于逻辑回归分析 过度分散 伪R平方 测试p值 Logistic回归示例 模型拟合 系数和指数系数 方差分析  伪R平方 模型的整体...回归可以使用glm  (广义线性模型)函数在R中执行  。...该函数使用链接函数来确定要使用哪种模型,例如逻辑模型,概率模型或泊松模型。  假设条件 广义线性模型的假设少于大多数常见的参数检验。观测值仍然需要独立,并且需要指定正确的链接函数。...因此,例如应该了解何时使用泊松回归以及何时使用逻辑回归。但是,不需要数据或残差的正态分布。...伪R平方 对于广义线性模型(glm),R不产生r平方值。pscl  包中的  pR2  可以产生伪R平方值。 测试p值 检验逻辑对数或泊松回归的p值使用卡方检验。方差分析  来测试每一个系数的显着性。

    3.1K00

    R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育调查数据

    具体来说,本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用,以及模型评估的方法。本教程使用教育数据例子进行模型的应用。此外,本教程还简要演示了用R对GLM模型进行的多层次扩展。...自然参数和输入x呈线性关系: 这3个条件的来由我们不讨论,我们只知道做这样的假设是基于“设计”的选择,而非必然。 我们以泊松回归为例, y服从泊松分布  ,化为指数族形式,我们可以得到 。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。...请注意,由于第一级分类变量(性别和学前教育)是中心化的,因此在模型中它们被当作连续变量,在下面的效果图中也是如此。 plot((Model) 除了固定效应项之外,我们也来看看随机效应项。...为了给计数数据建模,我们也可以使用泊松回归,它假设结果变量来自泊松分布,并使用对数作为链接函数。

    9.5K30

    基于R语言混合效应模型(mixed model)案例研究|附代码数据

    p=2596最近我们被客户要求撰写关于混合效应模型的研究报告,包括一些图形和统计输出。在本文中,我们描述了灵活的竞争风险回归模型。...回归模型被指定为转移概率,也就是竞争性风险设置中的累积发生率1.混合模型是否适合您的需求?混合模型在很多方面与线性模型相似。它估计一个或多个解释变量对因变量的影响。...这些影响是“固定的”,因为无论我在何处,如何采样或采样了多少只黄蜂,我在相同变量中仍将具有相同的水平:相同的菌落与不同的菌落,以及早季与晚季。但是,还有两个其他变量在样本之间不会保持固定。...交叉随机效应的形式为(1 | r1)+(1 | r2)...,而嵌套随机效应的形式为(1 | r1 / r2)。在这里,您可以指定混合模型将使用最大似然还是受限最大似然来估计参数。...model分析藻类数据实例R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例R语言用lme4多层次(混合效应)广义线性模型

    1.3K00

    r语言 固定效应模型_r语言coef函数

    笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节、中介效应)、一个是随机性方向(固定效应、随机效应)。...关于分布:因变量的分布有放宽,但是自变量没有分布的要求 与线性回归模型相比较,有以下推广: a、随机误差项不一定服从正态分布,可以服从二项、泊松、负二项、正态、伽马、逆高斯等分布,这些分布被统称为指数分布族...2、R语言案例 数据来源:一个传统的裂区数据来说明不同软件包的用法,这个数据oats是在MASS包中,是研究大麦品种和N肥处理的裂区试验,其中品种为主区,肥料为裂区。...在R语言中我们使用mgcv包中的lmer函数来完成这项工作。首先载入faraway包以便读取psid数据集,然后加载mgcv包,再将年份数据中心化以方便解释模型,最后用lmer函数进行建模。...这就是一个随机效应模型。如果认为随机效应只影响模型截距,那么固定效应回归模型可以用下面的公式 5、ASReml-R包 它的功能很强大,用在这里有些杀鸡用牛刀的感觉。

    5.7K30

    R语言线性模型臭氧预测: 加权泊松回归,普通最小二乘,加权负二项式模型

    泊松回归 为了防止出现负估计,我们可以使用假定为泊松分布而非正态分布的广义线性模型(GLM): plot.linear.model(pois.model, pois.preds, ozone$Ozone...[testset])  的 [R2[R2值0.616表示泊松回归比普通最小二乘(0.604)稍好。...加权泊松回归 p.w.pois  如我们所见,该模型结合了使用泊松回归(非负预测)和使用权重(低估离群值)的优势。确实,[R2[R2该模型的最低价(截断线性模型为0.652 vs 0.646)。...为了解决泊松模型中的过度分散问题,我们制定了加权负二项式模型。尽管此模型的表现不如加权Poisson模型([R2= 0.638 ),则在进行推理时可能会更好。...此后,我们尝试通过使用Hmisc包估算缺失值来进一步改进模型。尽管生成的模型比初始OLS模型要好,但是它们没有获得比以前更高的性能([R2= 0.627[R2=0.627)。

    1.1K00

    数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

    具体来说,本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用,以及模型评估的方法 本教程使用教育数据例子进行模型的应用。此外,本教程还简要演示了用R对GLM模型进行的多层次扩展。...自然参数和输入x呈线性关系: 这3个条件的来由我们不讨论,我们只知道做这样的假设是基于“设计”的选择,而非必然。 我们以泊松回归为例, y服从泊松分布  ,化为指数族形式,我们可以得到 。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。...请注意,由于第一级分类变量(性别和学前教育)是中心化的,因此在模型中它们被当作连续变量,在下面的效果图中也是如此。 plot((Model) 除了固定效应项之外,我们也来看看随机效应项。...为了给计数数据建模,我们也可以使用泊松回归,它假设结果变量来自泊松分布,并使用对数作为链接函数。

    1K10

    R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享

    GLM是一种灵活的统计模型,适用于各种数据类型和分布,包括二项分布、泊松分布和负二项分布等非正态分布。...部分原因是这里的响应变量在残差中不是正态分布的,而是泊松分布,因为它是计数数据。 泊松回归 具有泊松误差的广义线性模型通常具有对数链接,尽管也可以具有恒等链接。...最后,我们可以使用纳吉尔克计的伪R2来计算R2。 # fit r2(clam_gamma) 这是正态的吗? 你可能会问为什么这里使用伽马分布而不是正态分布?...在R中,我们可以使用两种形式来参数化二项逻辑回归 - 这两种形式是等价的,因为它们将结果扩展为成功次数和总试验次数。...R plotRes_bin) R summary(moglm) R r2(mouse_glm) 注意,离散参数为1,就像泊松分布一样。

    1K20

    数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据|附代码数据

    自然参数和输入x呈线性关系: 这3个条件的来由我们不讨论,我们只知道做这样的假设是基于“设计”的选择,而非必然。 我们以泊松回归为例, y服从泊松分布  ,化为指数族形式,我们可以得到 。...拟合二项式Logistic回归模型 为了拟合二项式逻辑回归模型,我们也使用glm函数。唯一的区别是在公式中对结果变量的说明。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。...请注意,由于第一级分类变量(性别和学前教育)是中心化的,因此在模型中它们被当作连续变量,在下面的效果图中也是如此。 plot((Model) 除了固定效应项之外,我们也来看看随机效应项。...为了给计数数据建模,我们也可以使用泊松回归,它假设结果变量来自泊松分布,并使用对数作为链接函数。

    1.1K00

    R语言︱线性混合模型理论与案例探究(固定效应&随机效应)

    笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节、中介效应)、一个是随机性方向(固定效应、随机效应)。...关于分布:因变量的分布有放宽,但是自变量没有分布的要求 与线性回归模型相比较,有以下推广: a、随机误差项不一定服从正态分布,可以服从二项、泊松、负二项、正态、伽马、逆高斯等分布,这些分布被统称为指数分布族...2、R语言案例 数据来源:一个传统的裂区数据来说明不同软件包的用法,这个数据oats是在MASS包中,是研究大麦品种和N肥处理的裂区试验,其中品种为主区,肥料为裂区。...在R语言中我们使用mgcv包中的lmer函数来完成这项工作。首先载入faraway包以便读取psid数据集,然后加载mgcv包,再将年份数据中心化以方便解释模型,最后用lmer函数进行建模。...这就是一个随机效应模型。如果认为随机效应只影响模型截距,那么固定效应回归模型可以用下面的公式 5、ASReml-R包 它的功能很强大,用在这里有些杀鸡用牛刀的感觉。

    20.4K76

    R语言用线性模型进行臭氧预测: 加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值

    R2值0.616表示泊松回归比普通最小二乘(0.604)稍好。但是,其性能并不优于将负值为0.646的模型。...结合 看到泊松回归可用于防止负估计,加权是改善离群值预测的成功策略,我们应该尝试将两种方法结合起来,从而得出加权泊松回归。 加权泊松回归 p.w.pois ?...如我们所见,该模型结合了使用泊松回归(非负预测)和使用权重(低估离群值)的优势。...为了解决泊松模型中的过度分散问题,我们建立了加权负二项式模型。尽管此模型的表现不如加权Poisson模型(R2= 0.638 ),则在进行推理时可能会更好。...此后,我们尝试通过使用Hmisc包估算缺失值来进一步改进模型。尽管生成的模型比初始OLS模型要好,但是它们没有获得比以前更高的性能(R2=0.627)。 那么,最好的模型到底是什么?

    1.6K20

    用于时间序列数据的泊松回归模型

    泊松和类泊松回归模型常用于基于计数的数据集,即包含整数计数的数据。例如,每小时走进医院急诊室的人数就是一个这样的数据集。...在季节性调整后的时间序列上拟合基于Poisson(或相关)计数的回归模型,但包括因变量y的滞后副本作为回归变量。 在本文中,我们将解释如何使用方法(3)在计数的时间序列上拟合泊松或类泊松模型。...我们在Poisson模型的回归变量中添加滞后罢工副本的策略似乎已经解释了很多罢工变量中的自相关。...我们不应该寄希望于预测的质量过高。请记住,尽管此模型比以前的NB2模型拟合得好得多,但伪R平方仍然仅为16%。...使用负二项模型(使用NB1或NB2方差函数)代替泊松模型,并将上述类型的滞后变量作为回归变量。 论文和相关连接 Cameron A.

    2.1K30

    R语言进阶之广义线性回归

    广义线性回归是一类常用的统计模型,在各个领域都有着广泛的应用。今天我会以逻辑回归和泊松回归为例,讲解如何在R语言中建立广义线性模型。...在R语言中我们通常使用glm()函数来构建广义线性模型,glm实际上是generalized linear model(广义线性模型)的首字母缩写,它的具体形式如下所示: glm(formula, family...在这里我主要和大家讲解一下逻辑(logistic)回归和泊松(poisson)回归这两个模型。...从输出结果来看,花瓣长度是可以较好区分这两类鸢尾花的,但是这个模型是原始和粗糙的,我们应该通过回归诊断的方式来修正此模型,使之更加精确,关于回归诊断请参见R语言入门之线性回归,这里就不赘述。...第二部分 泊松回归 泊松回归主要用于因变量(y)是计数资料而自变量(x)是连续型变量的时候,当然自变量(x)也可以是分类变量。

    1.8K41

    R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

    自然参数和输入x呈线性关系: 这3个条件的来由我们不讨论,我们只知道做这样的假设是基于“设计”的选择,而非必然。 我们以泊松回归为例, y服从泊松分布 ,化为指数族形式,我们可以得到 。...拟合二项式Logistic回归模型 为了拟合二项式逻辑回归模型,我们也使用glm函数。唯一的区别是在公式中对结果变量的说明。...在完整模型中,我们不仅包括性别、学前教育和学校平均社会经济地位的固定效应项和一个随机截距项,还包括性别和学前教育的随机斜率项。...请注意,由于第一级分类变量(性别和学前教育)是中心化的,因此在模型中它们被当作连续变量,在下面的效果图中也是如此。 plot((Model) 除了固定效应项之外,我们也来看看随机效应项。...为了给计数数据建模,我们也可以使用泊松回归,它假设结果变量来自泊松分布,并使用对数作为链接函数。

    1.1K10

    R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间|附代码数据

    p=15062 最近我们被客户要求撰写关于广义线性模型的研究报告,包括一些图形和统计输出。 考虑简单的泊松回归 。...这些值的计算基于以下计算 在对数泊松回归的情况下, 让我们回到最初的问题。 线性组合的置信区间 获得置信区间的第一个想法是获得置信区间 (通过取边界的指数值)。...NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究 R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系 R语言LME4混合效应模型研究教师的受欢迎程度R语言nlme、...nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例 R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化 R语言线性混合效应模型(固定效应...的贝叶斯分层混合模型的诊断准确性研究 R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题 基于R语言的lmer混合线性回归模型 R语言用WinBUGS 软件对学术能力测验建立层次(分层

    81500

    R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化

    library(lme4) # 加载lme4包,用于线性混合效应模型的分析 # 第一个案例:简单的线性混合效应模型,从10个组中模拟100个数据点,具有一个连续的固定效应变量...: 使用模型矩阵和固定效应系数来计算新数据点的预测值。...在R中,可以使用bootMer函数(来自lme4包)或predictInterval函数(来自merTools包)来近似计算这些区间。...那里的想法是从模型中模拟N次新数据,然后获取一些感兴趣的统计数据。在我们的案例中,我们感兴趣的是通过推导自举拟合值来获取回归线的置信区间。bb$t是一个矩阵,其中列是观测值,行是不同的自举样本。...现在让我们转向一个更复杂的例子,一个具有两个交叉随机效应的泊松广义线性混合模型(Poisson GLMM): # 第二个案例,具有两个交叉随机效应和泊松响应的更复杂设计 m <- glmer

    26310
    领券