首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

--- **像SQL那样打印列表前20元素** **以树的形式打印概要** **获取头几行到本地:** **查询总行数:** 取别名 **查询某列为null的行:** **输出list类型,list中每个元素是...随机抽样有两种方式,一种是在HIVE里面查数随机;另一种是在pyspark之中。...根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3_" ){time: String => time.split(...DataFrame是在分布式节点上运行一些数据操作,而pandas是不可能的; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame...中,我们也可以使用SQLContext类中 load/save函数来读取和保存CSV文件: from pyspark.sql import SQLContext sqlContext = SQLContext

30.6K10

为什么SQL语句Where 1=1 and在SQL Server中不影响性能

最近一个朋友和我探讨关于Where 1=1 and这种形式的语句会不会影响性能。最后结论是不影响。     虽然结论正确,但对问题的认识却远远没有解决问题的根本。...对出现在where子句中的字段加索引 避免在索引列上使用函数或计算,在where子句中,如果索引是函数的一部分,优化器将不再使用索引而使用全表扫描 在insert和update维表时都加上一个条件来过滤维表中已经存在的记录...在SQL Server中,T-SQL需要编译为执行计划才能去执行,在编译过程中,Query Optimizer需要考虑很多元数据,比如说表上的索引、数据分布、估计行数、一些参数配置、硬件环境等,在这其中...,因此不影响性能。    ...当然,这种情况的确是少数,但发生后往往对性能有一定影响,因此SQL Server 2014新的行数估计采用了指数退让算法,在这种情况下就会估计为1000行,从而引起性能问题的可能性会变小,2014指数退让算法不是本文的重点

2.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    浅谈pandas,pyspark 的大数据ETL实践经验

    如果其中有值为None,Series会输出None,而DataFrame会输出NaN,但是对空值判断没有影响。...DataFrame使用isnull方法在输出空值的时候全为NaN 例如对于样本数据中的年龄字段,替换缺失值,并进行离群值清洗 pdf["AGE"] = pd.to_numeric(pdf["AGE"],...data.drop_duplicates(['column']) pyspark 使用dataframe api 进行去除操作和pandas 比较类似 sdf.select("column1","column2...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。...和pandas 都提供了类似sql 中的groupby 以及distinct 等操作的api,使用起来也大同小异,下面是对一些样本数据按照姓名,性别进行聚合操作的代码实例 pyspark sdf.groupBy

    5.5K30

    Spark笔记12-DataFrame创建、保存

    比原有RDD转化方式更加简单,获得了更高的性能 轻松实现从mysql到DF的转化,支持SQL查询 DF是一种以RDD为基础的分布式数据集,提供了详细的结构信息。...传统的RDD是Java对象集合 创建 从Spark2.0开始,spark使用全新的SparkSession接口 支持不同的数据加载来源,并将数据转成DF DF转成SQLContext自身中的表,然后利用...SQL语句来进行操作 启动进入pyspark后,pyspark 默认提供两个对象(交互式环境) SparkContext:sc SparkSession:spark # 创建sparksession对象...from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession spark = SparkSession.builder.config....save("people.parquet") DF 常见操作 df = spark.read.json("people.json") df.printSchema() # 查看各种属性信息 df.select

    1.1K20

    Polars (最强Pandas平替)

    这使您能够处理结果,而无需同时将所有数据存储在内存中。 并行处理: Polars通过在可用的CPU核心之间分配工作负载,充分利用计算机性能,而无需额外配置。...Polars 是用 Rust 编写的,这使得它具有 C/C++ 性能,并允许它完全控制查询引擎中的性能关键部分。因此,Polars 为此付出了很大的努力: 减少冗余的复制。 高效地遍历内存缓存。...在 DataFrame 上可以执行的操作与在 SQL 查询中执行的操作非常相似。您可以进行 GROUP BY、JOIN、PIVOT,还可以定义自定义函数。...嵌套 Struct 结构数组表示为 Vec,用于在单个列中打包多个/异构值。...在eager API中,查询会立即执行,而在lazy API中,查询只有在“需要”时才会被评估。 !

    45410

    详解DataFrame高性能处理工具-Polars

    来源丨网络 Polars是一个用于操作结构化数据的高性能DataFrame库。其核心部分是用Rust编写的,但该库也提供了Python接口。...这使您能够处理结果,而无需同时将所有数据存储在内存中。 并行处理: Polars通过在可用的CPU核心之间分配工作负载,充分利用计算机性能,而无需额外配置。...Polars 是用 Rust 编写的,这使得它具有 C/C++ 性能,并允许它完全控制查询引擎中的性能关键部分。因此,Polars 为此付出了很大的努力: 减少冗余的复制。 高效地遍历内存缓存。...在 DataFrame 上可以执行的操作与在 SQL 查询中执行的操作非常相似。您可以进行 GROUP BY、JOIN、PIVOT,还可以定义自定义函数。...在eager API中,查询会立即执行,而在lazy API中,查询只有在“需要”时才会被评估。 !

    51510

    PySpark UD(A)F 的高效使用

    尽管它是用Scala开发的,并在Java虚拟机(JVM)中运行,但它附带了Python绑定,也称为PySpark,其API深受panda的影响。...由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...为了更好地理解实质性的性能差异,现在将绕道而行,调查这两个filter示例的背后情况。...所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...原因是 lambda 函数不能直接应用于驻留在 JVM 内存中的 DataFrame。 内部实际发生的是 Spark 在集群节点上的 Spark 执行程序旁边启动 Python 工作线程。

    19.8K31

    Apache Spark中使用DataFrame的统计和数学函数

    我们在Apache Spark 1.3版本中引入了DataFrame功能, 使得Apache Spark更容易用....受到R语言和Python中数据框架的启发, Spark中的DataFrames公开了一个类似当前数据科学家已经熟悉的单节点数据工具的API. 我们知道, 统计是日常数据科学的重要组成部分....列联表是统计学中的一个强大的工具, 用于观察变量的统计显着性(或独立性). 在Spark 1.4中, 用户将能够将DataFrame的两列进行交叉以获得在这些列中观察到的不同对的计数....5.出现次数多的项目 找出每列中哪些项目频繁出现, 这对理解数据集非常有用. 在Spark 1.4中, 用户将能够使用DataFrame找到一组列的频繁项目....请注意, " a = 11和b = 22" 的结果是误报(它们并不常出现在上面的数据集中) 6.数学函数 在Spark 1.4中还新增了一套数学函数. 用户可以轻松地将这些数学函数应用到列上面.

    14.7K60

    PySpark SQL——SQL和pd.DataFrame的结合体

    注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...03 DataFrame DataFrame是PySpark中核心的数据抽象和定义,理解DataFrame的最佳方式是从以下2个方面: 是面向二维关系表而设计的数据结构,所以SQL中的功能在这里均有所体现...withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列...,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选select) show:将DataFrame显示打印...05 总结 本文较为系统全面的介绍了PySpark中的SQL组件以及其核心数据抽象DataFrame,总体而言:该组件是PySpark中的一个重要且常用的子模块,功能丰富,既继承了Spark core中

    10K20

    大数据ETL实践探索(3)---- 大数据ETL利器之pyspark

    数据导入导出)的方法 ES 对于spark 的相关支持做的非常好,https://www.elastic.co/guide/en/elasticsearch/hadoop/2.4/spark.html 在官网的文档中基本上说的比较清楚....cache() ) print(df.count()) # 数据清洗,增加一列,或者针对某一列进行udf 转换 ''' #加一列yiyong ,如果是众城数据则为...", ] for column in column_Date: df=df.withColumn(column, func_udf_clean_date(df[column])) df.select...,百万级的数据用spark 加载成pyspark 的dataframe 然后在进行count 操作基本上是秒出结果 读写 demo code #直接用pyspark dataframe写parquet...因此,如果需要多次传递数据,那么花费一些时间编码现有的平面文件可能是值得的。 ?

    3.9K20

    3万字长文,PySpark入门级学习教程,框架思维

    因为在一个Spark作业调度中,多个作业任务之间也是相互依赖的,有些任务需要在一些任务执行完成了才可以执行的。...♀️ Q5: Shuffle操作是什么 Shuffle指的是数据从Map端到Reduce端的数据传输过程,Shuffle性能的高低直接会影响程序的性能。...♀️ Q6: 什么是惰性执行 这是RDD的一个特性,在RDD中的算子可以分为Transform算子和Action算子,其中Transform算子的操作都不会真正执行,只会记录一下依赖关系,直到遇见了Action...Spark调优思路 这一小节的内容算是对pyspark入门的一个ending了,全文主要是参考学习了美团Spark性能优化指南的基础篇和高级篇内容,主体脉络和这两篇文章是一样的,只不过是基于自己学习后的理解进行了一次总结复盘...使用cache()方法时,实际就是使用的这种持久化策略,性能也是最高的。 MEMORY_AND_DISK 优先尝试将数据保存在内存中,如果内存不够存放所有的数据,会将数据写入磁盘文件中。

    10K21

    pyspark 原理、源码解析与优劣势分析(2) ---- Executor 端进程间通信和序列化

    (2) ---- Executor 端进程间通信和序列化 pyspark 原理、源码解析与优劣势分析(3) ---- 优劣势总结 Executor 端进程间通信和序列化 对于 Spark 内置的算子,在...在 Spark 2.2 后提供了基于 Arrow 的序列化、反序列化的机制(从 3.0 起是默认开启),从 JVM 发送数据到 Python 进程的代码在 sql/core/src/main/scala...read_udfs 中,如果是 PANDAS 类的 UDF,会创建 ArrowStreamPandasUDFSerializer,其余的 UDF 类型创建 BatchedSerializer。...答案是肯定的,这就是 PySpark 推出的 Pandas UDF。...在 Pandas UDF 中,可以使用 Pandas 的 API 来完成计算,在易用性和性能上都得到了很大的提升。

    1.5K20
    领券