首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在python Pandas中绘制来自多个不同数据帧的堆叠条形图

在Python Pandas中绘制来自多个不同数据帧的堆叠条形图,可以通过以下步骤实现:

  1. 导入所需的库:import pandas as pd import matplotlib.pyplot as plt
  2. 创建多个数据帧,每个数据帧包含需要绘制的数据:df1 = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Value': [10, 15, 20]}) df2 = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Value': [5, 10, 15]}) df3 = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Value': [8, 12, 18]})
  3. 将多个数据帧合并为一个数据帧:df_combined = pd.concat([df1, df2, df3], keys=['df1', 'df2', 'df3'])
  4. 使用Pandas的pivot_table函数将数据帧转换为适合绘制堆叠条形图的形式:df_pivot = df_combined.pivot_table(index='Category', columns='level_0', values='Value')
  5. 绘制堆叠条形图:df_pivot.plot(kind='bar', stacked=True) plt.xlabel('Category') plt.ylabel('Value') plt.title('Stacked Bar Chart from Multiple Data Frames') plt.legend(title='Data Frame') plt.show()

这样就可以在Python Pandas中绘制来自多个不同数据帧的堆叠条形图了。

堆叠条形图是一种用于比较多个类别的数据的可视化方式。它将每个类别的数据分为多个堆叠的条形,每个堆叠代表一个数据帧。堆叠条形图可以显示不同数据帧之间的比较关系,以及每个数据帧中不同类别的数据之间的比较关系。

堆叠条形图适用于以下场景:

  • 比较多个数据帧中相同类别的数据
  • 显示数据帧中不同类别的数据之间的相对大小
  • 可视化数据帧中不同类别的数据的组成比例

腾讯云提供了一系列与云计算相关的产品,其中包括云服务器、云数据库、云存储等。您可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多关于腾讯云的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

使用 Pandas Python 绘制数据

在有关基于 Python 绘图库系列文章,我们将对使用 Pandas 这个非常流行 Python 数据操作库进行绘图进行概念性研究。...PandasPython 标准工具,用于对进行数据可扩展转换,它也已成为从 CSV 和 Excel 格式导入和导出数据流行方法。 除此之外,它还包含一个非常好绘图 API。...这非常方便,你已将数据存储 Pandas DataFrame ,那么为什么不使用相同库进行绘制呢? 本系列,我们将在每个库制作相同多条形柱状图,以便我们可以比较它们工作方式。...我们使用数据是 1966 年至 2020 年英国大选结果: image.png 自行绘制数据 继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本 Python...本系列文章,我们已经看到了一些令人印象深刻简单 API,但是 Pandas 一定能夺冠。

6.9K20
  • Pandas可视化综合指南:手把手从零教你绘制数据图表

    整理 | 晓查 来自 | 量子位 数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    1.8K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    2.5K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    本文经AI新媒体量子位(QbitAI)授权转载,转载请联系出处 数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 | 公众号 QbitAI 数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    1.9K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    1.7K10

    Pandas数据可视化

    pandas库是Python数据分析核心库 它不仅可以加载和转换数据,还可以做更多事情:它还可以可视化 pandas绘图API简单易用,是pandas流行重要原因之一 Pandas 单变量可视化...单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用可视化图表 在下面的案例...  直方图看起来很像条形图, 直方图是一种特殊条形图,它可以将数据分成均匀间隔,并用条形图显示每个间隔中有多少行, 直方图柱子宽度代表了分组间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀间隔区间...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠堆叠图是将一个变量绘制另一个变量顶部图表 接下来通过堆叠图来展示最常见五种葡萄酒  从结果中看出,最受欢迎葡萄酒是...: 通过透视表找到每种葡萄酒不同评分数量 : 从上面的数据中看出,行列分别表示一个类别变量(评分,葡萄酒类别),行列交叉点表示计数,这类数据很适合用堆叠图展示 折线图双变量可视化时,仍然非常有效

    11910

    Python 数据可视化之山脊线图 Ridgeline Plots

    文章目录 一、前言 二、主要内容 三、总结 一、前言 JoyPy 是一个基于 matplotlib + pandas 单功能 Python 包,它唯一目的是绘制山脊线图 Joyplots(也称为 Ridgeline...在行为差异、特征工程和预测建模等场景,了解不同组之间变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢单一坐标轴上绘制组级分布图,例如直方图或密度图。...平滑展示数据分布:与传统条形图或直方图相比,山脊线图提供了一种更平滑、更直观方式来展示数据分布情况。 比较能力:山脊线图非常适合比较多个分布形状和大小,清晰地展示不同组之间变化和趋势。...空间效率:通过单个图中堆叠,山脊线图可以有效地利用空间,避免了创建多个单独密度图。 美观性:山脊线图视觉上吸引人,用不同颜色和样式区分不同组,使得数据更加生动和直观。...使用 JoyPy,一个基于 matplotlib + pandas 轻量级 Python 包,可以轻松绘制山脊线图 Joy Plot。 ️

    38400

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    导读:数据可视化本来是一个非常复杂过程,但随着Pandas数据plot()函数出现,使得创建可视化图形变得很容易。...在数据上进行操作plot()函数只是matplotlibplt.plot()函数一个简单包装 ,可以帮助你绘图过程中省去那些长长matplotlib代码。...最近,一位来自印度小哥以2019年世界幸福指数数据为例,详细讲述了Pandasplot()函数各种参数设置小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩可视化图表。...此外,Pandas还有一个辅助函数pandas.plotting.table,它创建一个来自数据表格,并将其添加到matplotlib Axes实例。...04 其他高阶用法 可以使用stacked参数来绘制带有条形图堆叠图。在这里,我们绘制堆叠水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?

    1.7K30

    原来使用 Pandas 绘制图表也这么惊艳

    数据可视化是捕捉趋势和分享从数据获得见解非常有效方式,流行可视化工具有很多,它们各具特色,但是今天文章,我们将学习使用 Pandas 进行绘图。...%matplotlib 内联魔法命令也被添加到代码,以确保绘制数字正确显示笔记本单元格: import pandas as pd import numpy as np import matplotlib.pyplot...探索和可视化数据了,开始吧 折线图 plot 默认图就是折线图,它在 x 轴上绘制索引, y 轴上绘制 DataFrame 其他数字列。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以堆叠垂直或水平条形图绘制数据,这些条形图代表不同组,结果条高度显示了组组合结果...如果在同一个图中显示了多个面积图,则不同颜色可以区分不同面积图: df.plot(kind='area', figsize=(9,6)) Output: Pandas plot() 方法默认创建堆积面积图

    4.5K50

    一文掌握Pandas可视化图表

    今天简单介绍一下Pandas可视化图表一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便将Series和Dataframe类型数据直接进行数据可视化。 1....常见图表类型 介绍完图表元素设置后,我们演示一下常见几种图表类型。 柱状图 柱状图主要用于数据对比,通过柱形高低来表达数据大小。...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据不同区间内分布情况,描述数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示直角坐标系上...其他图表类型 常见图表,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    8.1K50

    数据可视化』一文掌握Pandas可视化图表

    今天简单介绍一下Pandas可视化图表一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便将Series和Dataframe类型数据直接进行数据可视化。 1....绘图引擎 通过backend可以指定不同绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair等等。当然,使用新引擎前需要先安装对应库。...常见图表类型 介绍完图表元素设置后,我们演示一下常见几种图表类型。 柱状图 柱状图主要用于数据对比,通过柱形高低来表达数据大小。...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据不同区间内分布情况,描述数据量一般比较大。...其他图表类型 常见图表,有密度图和六边形箱型图 绘制过程报错,暂时没有解决(本机环境:pandas1.3.1) 本节主要介绍散点矩形图、安德鲁曲线等,更多资料大家可以查阅官方文档了解 https:/

    8K40

    如何在 Python 中使用 plotly 创建人口金字塔?

    人口金字塔是人口年龄和性别分布图形表示。它由两个背靠背条形图组成,一个显示男性分布,另一个显示女性不同年龄组分布。...plotly.express 和用于将数据加载到数据 pandas。...接下来,我们使用 read_csv() 函数将人口数据从 CSV 文件加载到 pandas 数据。...数据使用 pd.read_csv 方法加载到熊猫数据。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组 x 和 y 值。...输出 结论 本文中,我们学习了如何在 Python 中使用 Plotly 创建人口金字塔。我们探索了两种不同方法来实现这一目标,一种使用熊猫数据透视表,另一种使用 Plotly 图形对象。

    37410

    功能强大、文档健全开源 Python 绘图库 Plotly,手把手教你用!

    *注:Plotly 本身是一个拥有多个不同产品和开源工具集可视化技术公司。...点击图片上元素就能显示出详细信息、随意缩放,还带有(我们接下来会提到)高亮筛选某些部分等超棒功能。 如果你想绘制堆叠柱状图,也只需要这样: ? ?...对 pandas 数据表进行简单处理,并生成条形图: ? ? 就像上面展示那样,我们可以将 plotly + cufflinks 和 pandas 能力整合在一起。...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道,每篇文章带来新增粉丝数: ? ?...散点图 散点图是大多数分析核心内容,它能让我们看出一个变量随着时间推移变化情况,或是两个(或多个)变量之间关系变化情况。 时间序列分析 现实世界,相当部分数据都带有时间元素。

    4.1K52

    这些条形图用法您都知道吗?

    R语言ggplot2包,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其印象是什么呢?又见过哪些种类条形图呢?本篇文章我将带着各位网友说道说道有关条形图哪些品种。...,有两点需要说明,一方面,ggplot2绘图过程均采用图层思想,将多个图形进行叠加和设置;另一方面,图层思想是通过代码加号(+)表现出来。...前提是绘图数据已做了统计汇总); position:用于设置条形图摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图...如果绘图数据涉及是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...然而,实际企业环境,这样图形出现频次并不是很高,因为绝对数量堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍百分比堆叠条形图

    5.5K10
    领券