首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

非平衡数据集 focal loss 多类分类

本教程将向您展示如何在给定的高度不平衡的数据集的情况下,应用焦点损失函数来训练一个多分类模型。...若某类目标的样本相比其他类在数量上占据极大优势,则可以将该数据集视为不平衡的数据集。...对具体图像分类问题,对数据增强技术方案变更,以便为样本不足的类创建增强的数据。...将 Focal Loss 应用于欺诈检测任务 为了演示,我们将会使用 Kaggle上的欺诈检测数据集 构建一个分类器,这个数据及具有极端的类不平衡问题,它包含总共6354407个正常样本和8213个欺诈案例...为了证明focal loss 比传统技术更有效,让我们建立一个简单地使用类别权重 class_weight训练的基准模型,告诉模型“更多地关注”来自代表性不足的欺诈样本。 ?

3.7K30

输出图案类问题的思路

一、问题导入 编写一个程序,只用两条输出语句,生成一个像半个5*5正方形形状(直角三角形)的#符号图案: ##### #### ### ## # 二、问题分析 我们可以采用消减法,先把它想象成一个5*5...的矩形。...那么,接下来应该怎样修改代码,使它产生半正方形的图案呢? 如果我们观察上面的程序清单并把它与自己所需要的半正方形的输出进行比较,可以发现问题在于条件表达式hashNum 的表达式,首先想到的可能是在行号前面加个符号,相当于把它乘以-1.这种方法可以产生递减的数字,却不是我们所需要的数字。...8 printf("#"); 9 } 10 printf("\n"); 11 } 12 } 三、问题延伸 编写一个程序,只用两条输出语句产生一个类似侧三角形形状的

1.9K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用分类权重解决数据不平衡的问题

    在分类任务中,不平衡数据集是指数据集中的分类不平均的情况,会有一个或多个类比其他类多的多或者少的多。...但是这在实际使用时肯定不好,所以其实我们可以做的更好。 改进模型加入类权重 基线模型将两个类设置成同等重要,因为模型不知道我们更关心欺诈的情况,所以我们需要重新定义我们的损失函数。...sklearn API提供了让模型知道对正确识别欺诈的偏好:class_weight参数。 当使用class_weight时,模型接收一个字典,每个类都有一个键,其中的值是该类的权重。...我们需要做的是使用下面的公式建立一个字典,其中权重与数据中的类分布成比例: len(X_train) / (2 * numpy.bincount(y_train)) 将上面的公式应用到我们的数据中,我们估计正情况实际上比负情况重要...本文中介绍的方法是解决分类不平衡问题的一种过简单的方法,在这个领域中还有许多其他的方法可以讨论,但是为分类设置权重是一个非常好的开始。

    47810

    基于sklearn的LogisticRegression鸢尾花多类分类实践

    模型选择 本人相关文章: 逻辑斯谛回归模型( Logistic Regression,LR) 基于sklearn的LogisticRegression二分类实践 sklearn多类和多标签算法: Multiclass...classification 多类分类 意味着一个分类任务需要对多于两个类的数据进行分类。...比如,对一系列的橘子,苹果或者梨的图片进行分类。多类分类假设每一个样本有且仅有一个标签:一个水果可以被归类为苹果,也可以是梨,但不能同时被归类为两类。...固有的多类分类器: sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”) 1对多的多类分类器:...当存在结时(两个类具有同样的票数的时候), 1对1分类器会选择总分类置信度最高的类,其中总分类置信度是由下层的二元分类器 计算出的成对置信等级累加而成。

    1.6K30

    JVM类加载器的分类

    JVM支持两种类型的类加载器 。...,但是Java虚拟机规范却没有这么定义,而是将所有派生于抽象类ClassLoader的类加载器都划分为自定义类加载器 无论类加载器的类型如何划分,在程序中我们最常见的类加载器始终只有3个,如下所示 为什么...,没有父加载器 加载扩展类和应用程序类加载器,并作为他们的父类加载器(当他俩的爹) 出于安全考虑,Bootstrap启动类加载器只加载包名为java、javax、sun等开头的类 1.2 扩展类加载器...从java.ext.dirs系统属性所指定的目录中加载类库,或从JDK的安装目录的 jre / lib / ext子目录(扩展目录)下加载类库。...实现 派生于ClassLoader类 父类加载器为扩展类加载器 它负责加载环境变量 classpath 或 系统属性java.class.path指定路径下的类库 该类加载是程序中默认的类加载器,一般来说

    26230

    使用 Pytorch 进行多类图像分类

    挑战 这是一个多类图像分类问题,目标是将这些图像以更高的精度分类到正确的类别中。 先决条件 基本理解python、pytorch和分类问题。...定义一些实用函数来执行各种任务,从而可以保持代码的模块化。 加载各种预先训练的模型并根据我们的问题对它们进行微调。 为每个模型尝试各种超参数。 保存模型的权重并记录指标。...添加我们自己的分类器层 现在要将下载的预训练模型用作我们自己的分类器,我们必须对其进行一些更改,因为我们要预测的类数可能与模型已训练的类数不同。...我们可以看到这个预训练模型是为对1000个类进行分类而设计的,但是我们只需要 6 类分类,所以稍微改变一下这个模型。...替换最后一层后的新模型: 我已经用我自己的分类器层替换了分类器层,因为我们可以看到有 6 个 out_features,这意味着 6 个输出,但在预训练模型中还有一些其他的数字,因为模型经过训练,可以对这些数量的类进行分类

    1.2K10

    java网格输出的类

    在做测试的时候,经常需要把一些信息输出到控制台,但是格式上比较乱,想弄成一个类似SQL客户端的那个输出格式,在参考了一些资料后自己写了一个简单的控制台网格输出的类,分享代码供大家参考。...类代码如下(下一步优化其他数据类型和header以及边栏支持): package com.fun.utils; import com.fun.frame.SourceCode;import net.sf.json.JSONObject...public static void show(List> rows) { new ConsoleTable(rows); } /** * 输出...); }); output(stringBuffer.append(LINE + getHeader()).toString()); } /** * 输出...在groovy语言使用java的stream各种方法时,还是遇到了不少的坑,目前主要还是符号兼容的问题比较多,所以尽量还是java stream的自己的语法比较好。

    1.1K30

    使用TensorFlow 2.0的LSTM进行多类文本分类

    假设正在解决新闻文章数据集的文档分类问题。 输入每个单词,单词以某种方式彼此关联。 当看到文章中的所有单词时,就会在文章结尾进行预测。...在新闻文章示例的文件分类中,具有这种多对一的关系。输入是单词序列,输出是单个类或标签。 现在,将使用TensorFlow 2.0和Keras使用LSTM解决BBC新闻文档分类问题。...然后将其拟合到密集的神经网络中进行分类。 用它们relu代替tahn功能,因为它们是彼此很好的替代品。 添加了一个包含6个单位并softmax激活的密集层。...当有多个输出时,softmax将输出层转换为概率分布。...双向的输出为128,因为它在LSTM中的输出增加了一倍。也可以堆叠LSTM层,但是发现结果更糟。

    4.3K50

    go.php跳转不输出权重的跳转方式真的有用么?

    看到好多的网站都有在用go.php文件来做站外链接的跳转,已查阅大概是说这样可以不输出权重的,好奇感兴趣自己也网上找了一个来试试。 ?...我们一般超链接,链接站外都是会添加rel=”nofollow”这样的字样,这个nofollow的作用百科是这样说的:nofollow 是HTML页面中a标签的属性值。...这个标签的意义是告诉搜索引擎”不要追踪此网页上的链接或不要追踪此特定链接”。 go.php跳转不输出权重的跳转方式真的有用么?这个不太好说具体还需要进行一些进一步的测试才能知道。...所以个人感觉这个已经有搜索引擎”不要追踪”的作用了的。 不过还是比较好奇就添加了一个go.php文件来试试吧,以下代码收集自网上,并非自己所写: <?

    1K20

    文本分类又来了,用 Scikit-Learn 解决多类文本分类问题

    然而大部分的文本分类文章和网上教程是二进制的文本分类,像垃圾邮件过滤(spam vs. ham)、情感分析(积极的和消极的)。在大量实例中,我们现实世界的问题要比这些复杂的多。...这是一个多类文本分类问题。我已经迫不及待地想看下我们完成的结果。 数据浏览 在投入训练机器学习模型前,我们应当先看一些实例以及每个类别中投诉的数量: ? ?...输出:产品 实例:信用报告 我们将在消费者投诉陈述栏删除无赋值的,并且增加一栏编译该产品作为一个整数值,因为通常分类属性变量用整数比用字符串代表要好。 我们也创建了几个字典以备将来使用。...清理后,这是我们要使用的最初的5行数据: ? ? 图2 不平衡的分类 我们看到每个产品的投诉数值不平衡。消费者的投诉多针对索回债款、信用报告和房屋抵押贷款。 ? ?...在一些例子中,像欺诈侦测和癌症预测,我们将仔细设置我们的模型或人工平衡数据集,比如通过欠采样和过采样每个类。 然而,在我们的学习不均衡的数据的例子中,我们会将兴趣点放在占少数的的分类上。

    1.1K10

    使用Pytorch和转移学习进行端到端多类图像分类

    数据探索 将从Kaggle 的Boat数据集开始,以了解多类图像分类问题。该数据集包含约1,500种不同类型的船的图片:浮标,游轮,渡船,货船,吊船,充气船,皮划艇,纸船和帆船。...from torchvision import modelsmodel = models.resnet50(pretrained=True) 先冻结模型权重,因为不想更改resnet50模型的权重。...该神经网络从上一层获取输入,fc并给出shape的对数softmax输出(batch_size x n_classes)。...这里要使用分类交叉熵,因为有一个多类分类问题,而Adam最优化器是最常用的优化器。但是由于在模型的输出上应用了LogSoftmax操作,因此将使用NLL损失。...在这个小的数据集中,TTA似乎并没有增加太多价值,但是注意到它为大型数据集增加了价值。 结论 在本文中,讨论了使用PyTorch进行多类图像分类项目的端到端管道。

    1.1K20

    AI: 探索大模型权重的分类:Chat、Code、Embedding和Rerank

    大模型的权重通常可以根据其应用场景分为不同的类别,如Chat、Code、Embedding和Rerank。了解这些分类及其差异对于我们在实际应用中选择合适的模型至关重要。...本文将详细讲解这四种权重分类,并说明它们的差异。 1. Chat(对话) Chat模型专注于对话生成和自然语言理解。这些模型经过专门训练,能够理解并生成连贯、自然的对话。...特点: 自然语言生成:能够生成流畅且有意义的对话。 上下文理解:能够记住对话的上下文并进行相关的回答。 人性化交互:与用户进行类人互动,提供友好的用户体验。...应用场景: 搜索引擎 推荐系统 问答系统 差异分析 虽然这四种权重分类都属于大模型的范畴,但它们在应用领域和技术特点上有显著差异: 应用领域:Chat模型用于对话生成,Code模型用于代码生成与理解,Embedding...因此,出于商业和战略考虑,这些模型的权重通常不会公开,以保持竞争优势。 结论 理解大模型权重的不同分类及其差异,可以帮助我们更好地选择和应用适合的模型,从而在各自的领域中发挥其最大潜力。

    1.7K11

    【图像分类】 基于Pytorch的多类别图像分类实战

    欢迎大家来到图像分类专栏,本篇基于Pytorch完成一个多类别图像分类实战。 作者 | 郭冰洋 编辑 | 言有三 1 简介 ?...Pytorch中封装了相应的数据读取的类函数,通过调用torch.utils.data.Datasets函数,则可以实现读取功能。 ?...多类别分类”给公众号 4 训练及参数调试 初始学习率设置为0.01,batch size设置为8,衰减率设置为0.00001,迭代周期为15,在不同框架组合下的最佳准确率和最低loss如下图所示: ?...总结 以上就是整个多类别图像分类实战的过程,由于时间限制,本次实战并没有对多个数据集进行训练,因此没有列出同一模型在不同数据集上的表现。...往期精选 【技术综述】你真的了解图像分类吗? 【技术综述】多标签图像分类综述 【图像分类】分类专栏正式上线啦!初入CV、AI你需要一份指南针!

    4K10

    【DS】Doc2Vec和Logistic回归的多类文本分类

    2 您如何做文本分类? Doc2vec是一个NLP工具,用于将文档表示为向量,是word2vec方法的推广。为了理解doc2vec,最好理解word2vec方法。 ?...教程 word嵌入的文档分类教程 在使用Scikit-Learn进行多类文本分类时使用相同的数据集,在本文中,我们将使用Gensim中的doc2vec技术对产品的投诉进行分类。...数据 目标是将消费者金融投诉分为预先定义好的12类。这些数据可以从data.gov下载。...然而,这些类是不平衡的,一个朴素分类器预测所有要收债的东西只会达到20%以上的准确率。 让我们看几个投诉叙述及其相关产品的例子。...在本文中,我使用训练集对doc2vec进行训练,但是在Gensim的教程中,使用整个数据集进行训练,我尝试了这种方法,使用整个数据集对doc2vec分类器进行训练,用于我们的消费者投诉分类,我的准确率达到了

    2.2K40

    书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类

    书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类 文本分类器,提供多种文本分类和聚类算法,支持句子和文档级的文本分类任务,支持二分类...、多分类、多标签分类、多层级分类和Kmeans聚类,开箱即用。...分类可以分为多分类和多标签分类。...多分类的标签是排他的,而多标签分类的所有标签是不排他的。...多标签分类比较直观的理解是,一个样本可以同时拥有几个类别标签, 比如一首歌的标签可以是流行、轻快,一部电影的标签可以是动作、喜剧、搞笑等,这都是多标签分类的情况。

    47330

    PyTorch中基于TPU的FastAI多类图像分类

    在某些领域,甚至它们在快速准确地识别图像方面超越了人类的智能。 在本文中,我们将演示最流行的计算机视觉应用之一-多类图像分类问题,使用fastAI库和TPU作为硬件加速器。...「本文涉及的主题」: 多类图像分类 常用的图像分类模型 使用TPU并在PyTorch中实现 多类图像分类 我们使用图像分类来识别图像中的对象,并且可以用于检测品牌logo、对对象进行分类等。...在输出中,我们可以看到我们得到了0.99的准确度,它花了1分2秒。 在下面的代码片段中,我们使用混淆矩阵显示结果。...在下面的代码片段中,我们可以得到输出张量及其所属的类。 learn.predict(test) ? 正如我们在上面的输出中看到的,模型已经预测了输入图像的类标签,它属于“flower”类别。...结论 在上面的演示中,我们使用带TPU的fastAI库和预训练VGG-19模型实现了一个多类的图像分类。在这项任务中,我们在对验证数据集进行分类时获得了0.99的准确率。

    1.4K30

    使用Pytorch进行多类图像分类

    挑战 这是一个多类图像分类问题。目的是将这些图像更准确地分类为正确的类别。 先决条件 基本了解python,pytorch和分类问题。...但是只需要6类分类,因此可以稍微更改此模型。...替换最后一层后的新模型: 已经用自己的分类器层替换了,因为可以看到有6个out_features表示6个输出,但是在预训练模型中还有另一个数字,因为模型经过训练可以对这些分类进行分类。...可以为它们选择任何数字,但请记住,第一个线性层内部的in_features必须为25088,因为它是输出层的数目,不能更改,该数字必须是不变的。...通过继承基类为每个模型创建一个类,该基类具有训练任何模型期间所需的所有有用功能。

    4.5K11
    领券