聚类分析的思想:对于有p个变量的数据集来说,每个观测值都是p维空间中的一个点,所以属于同一类的点在空间中的距离应该显著小于属于不同类的点之间的距离
今天小编向大家介绍一下使用gapmap和dendsort包生成带间隙的热图绘制方法及效果。
heatmap()的输入应该是一个矩阵(或者一个将被转换为单列矩阵的向量)。如果矩阵被分割成组,必须用split参数指定一个分类变量。注意spilt的值应该是一个字符向量或一个因子。如果它是一个数字向量,它将被转换为字符。
主成分分析法是很常用的一种数据降维方法[1]。该方法可以减少数据的维数,并保持对方差贡献最大的特征,相当于保留低阶主成分,忽略高阶主成分。
热图是一种流行的可视化高维数据的图形方法,其中一个数字表被编码为彩色单元格的网格。矩阵的行和列按顺序排列以突出显示模式,并且通常伴随有树状图。热图在许多领域中用于可视化观察、相关性、缺失值模式等。
曼哈顿图(manhattan plot),是一种类似曼哈顿摩天大楼排列的一种展示图。如下图所示。
那么圆形的树状图如何实现呢?我查找了一下相关资料。R语言包dendextend这个包可以实现,利用help(package="dendextend")查看帮助文档,能够看到其中的一个小例子
这个图来自链接 http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/112-pca-principal-component-analysis-essentials/
#与原文存在差异的原因是原文mRNA-seq要对注释gtf文件对进行过滤甲基化区域和polyA尾以及原文用的hg19 74gtf 本文用的hg38.
今天我们来给大家介绍另一个做PCA分析并绘图的R包factoextra,很多SCI文章中都用到了这个R包。换句话说这个R包画出来的PCA图是发表级的。
ComplexHeatmap可以绘制很复杂的热图,能满足日常以及文章所需,本次先简单的介绍单个热图绘制的内容。
网络上很多R语言教程都是基于R语言实战进行修改,今天为大家介绍更好用的R包,在之前聚类分析中也经常用到:factoextra和factoMineR,关于主成分分析的可视化,大家比较常见的可能是ggbiplot,这几个R包都挺不错,大家可以比较下。
pheatmap是热图中使用频率比较高一个R包,ComplexHeatmap:用于绘制、注释和排列复杂热图。现在ComplexHeatmap 迎来新版本升级,支持pheatmap 参数转换。
观察仔细的小伙伴可能发现,在上面这张图里面有三个点比其他点要大一些,其实这三个点是三个组的中心点。那么我们怎么去除各组的中心点呢?其实只需要修改mean.poin这个参数就可以了
主要讲了如何展示样本的主成分分析结果,即样本在新的空间中的分布情况,便于查看样本分群的结果。
Rplot_FVIZ.png可以很明显的看到,第一个主成分就把我们的NSCLC和SCLC区分的还不错 更多完整的PCA教程看群主之前的推文:
可以看到有16个指标支持最佳聚类数目为3,5个指标支持聚类数为2,所以该方法推荐的最佳聚类数目为3.
PCA(Principal Component Analysis),即主成分分析方法,是一种使用广泛的数据降维算法。详细的概念可以参照https://zhuanlan.zhihu.com/p/37777074 一般将多个样本降维就可以得到二维的分布,相似的样本成为一群,但有时候我们想知道哪些特征导致了这样的分群。 这里我们主要讨论怎么样用R实现以及提取我们需要的特征: 用R实现PCA有多个方法: prcomp() and princomp() [built-in R stats package], PCA() [FactoMineR package], dudi.pca() [ade4 package], and epPCA() [ExPosition package]
AI科技评论按,本文作者贝尔塔,原文载于知乎专栏数据分析与可视化,AI科技评论获其授权发布。 在聚类分析的时候确定最佳聚类数目是一个很重要的问题,比如kmeans函数就要你提供聚类数目这个参数,总不能两眼一抹黑乱填一个吧。之前也被这个问题困扰过,看了很多博客,大多泛泛带过。今天把看到的这么多方法进行汇总以及代码实现并尽量弄清每个方法的原理。 数据集选用比较出名的wine数据集进行分析 library(gclus) data(wine) head(wine) Loading required package:
极树状图类似于系统发育图或者环形的聚类图,其效果如下图所示: 查了一下相关资料,可以通过以下两种方法实现。以下用mtcars数据为例。 1. ape包 library(ape) data('mtcar
本篇想和大家介绍下层次聚类,先通过一个简单的例子介绍它的基本理论,然后再用一个实战案例Python代码实现聚类效果。
在聚类分析的时候确定最佳聚类数目是一个很重要的问题,比如kmeans函数就要你提供聚类数目这个参数,总不能两眼一抹黑乱填一个吧。之前也被这个问题困扰过,看了很多博客,大多泛泛带过。今天把看到的这么多方
k均值聚类是一种比较常用的聚类方法,R语言里做k均值聚类比较常用的函数是kmeans(),需要输入3个参数,第一个是聚类用到的数据,第二个是你想将数据聚成几类k,第三个参数是nstarthttps://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
AI 研习社按:作为目前最常见的一种可视化手段,热图因其丰富的色彩变化和生动饱满的信息表达被广泛应用于各种大数据分析场景。同时,专用于大数据统计分析、绘图和可视化等场景的 R 语言,在可视化方面也提供了一系列功能强大、覆盖全面的函数库和工具包。 因此,对从业者而言,用 R 语言绘制热图就成了一项最通用的必备技能。本文将以 R 语言为基础,详细介绍热图绘制中遇到的各种问题和注意事项。原文作者 taoyan,原载于作者个人博客,AI 研习社获授权。 简介 本文将绘制静态与交互式热图,需要使用到以下R包和函数
关于更加精细化的细节修改,下次再介绍。或者可以借助其他R包快速绘制好看的聚类分析图形。
2017年8月份的R语言更新包中,默默地加入了支持ggplot2树状图的新几何对象,从此在R语言中制作树状图,不用再求助于第三方包的辅助了。 该包既有Cran上的正式发行版,也有托管在GitHub上的开发版,安装方式如下: CRAN: install.package("treemapify") Github: devtools::install_github("wilkox/treemapify") GitHub主页: https://github.com/wilkox/treemapify 载入本文章所
一般来说,类似K-means聚类算法需要我们提取指定聚类得到的cluster数目。 那么问题来了,如何为聚类选择一个适合的cluster数目呢 ? 很遗憾,上面的问题没有一个确定的答案。不过我们可以基于不同聚类过程中使用的相似性算法和模块划分参数,选择一个最合适的数目。 下面介绍不同的方法,帮助我们在K-means,PAM和层次聚类中选择合适的聚类数目,这些方法包括直接方法和统计检验方法。 直接方法 设置一些适合的划分标准,比如elbow和average silhouette法 统计检验方法 就是常用的假设
factoextra是一个R软件包,可以轻松提取和可视化探索性多变量数据分析的输出,其中包括: 主成分分析(PCA),用于通过在不丢失重要信息的情况下减少数据的维度来总结连续(即定量)多变量数据中包含的信息。 对应分析(CA),它是适用于分析由两个定性变量(或分类数据)形成的大型列联表的主成分分析的扩展。 多重对应分析(MCA),它是将CA改编为包含两个以上分类变量的数据表格。 多因素分析(MFA)专用于数据集,其中变量按组(定性和/或定量变量)组织。 分层多因素分析(HMFA):在数据组织为分
hclust 的顺序是靠order 和 labels 两个数据控制,labels 是有顺序的名称,其座次可以被索引提取。order
如果不对数据进行scale处理,本身数值大的基因对主成分的贡献会大。如果关注的是变量的相对大小对样品分类的贡献,则应SCALE,以防数值高的变量导入的大方差引入的偏见。但是定标(scale)可能会有一些负面效果,因为定标后变量之间的权重就是变得相同。如果我们的变量中有噪音的话,我们就在无形中把噪音和信息的权重变得相同,但PCA本身无法区分信号和噪音。在这样的情形下,我们就不必做定标。
示例数据一:现有16种饮料的热量、咖啡因含量、钠含量和价格的数据,根据这4个变量对16饮料进行聚类
示例数据一:现有16种饮料的热量、咖啡因含量、钠含量和价格的数据,根据这4个变量对16饮料进行聚类。
PCA是为了更好地展示多维数据,通过线性转化,展示保留最多信息的主成分;将样本尽可能地分散地展示在坐标轴中达到可视化的目的;
ggplot2自从2007年推出以来,成为世界范围内下载最频繁、使用最广泛的R包之一。许多人包括ggplot2的创建人Hadley Wickham将这一成功归功于ggplot2背后的哲学。这个软件包的灵感来源于Leland Wilkinson编写的《图形语法》一书,在此书中将graphs 分解成scales和layers,并将原始数据与表现形式分离开。
colorhcplot将层次聚类分析的结果可视化为树状图,树状图的叶子和标签根据样本分组着色。直观的评估数据分组是否与自然发生的簇一致。
**Z值(z-score)**又称标准数,能够将不同量级的数据转化为相同量级,实现标准化。
今天这一篇跟大家分享R语言数据可视化之——TreeMap。 在R语言中制作树状图需要独立的树状图工具包——TreeMap的支持。 该包中提供特有的treemap函数结合各参数对树状图进行一系列元素进行个性化定制、调整。 数据集使用本人虚构的某公司在中国各个大区、省份的销售额、利润增长率指标(假设各省份都有业务)。 R语言环境: R x64 3.31/Rstudio 0.99.903/treemap 2.4-1 数据集导入: data <- read.csv("F:\\数据可视化\\数据分析\\R\\R语言学
确定数据集中最佳的簇数是分区聚类(例如k均值聚类)中的一个基本问题,它要求用户指定要生成的簇数k。
一文看懂PCA主成分分析中介绍了PCA分析的原理和分析的意义(基本简介如下,更多见博客),今天就用数据来实际操练一下。
在视觉性方面,人类普遍能够感知的是二维和三维空间。对于高维数据的可视化是将高维数据投影到二维或三维空间,去掉冗余属性,同时保留高维空间的数据和特征。说白了,高维数据的可视化就是使用降维度方法,主要分成线性和非线性两大类,关于非线性的非度量多维尺度分析NMDS见往期文章非度量多维尺度分析(NMDS),关于线性的PCA方法,见往期文章PCA做图最佳搭档-ggbiplot,本文主要针对迷弥小粉丝关于绘制线性PCA图数据处理过程遇到的问题进行记录。
ggtree是ggplot2的拓展包,可以应用于进化树的绘制,还能对进化树丰富的注释分析。
数据集下载链接 https://acadgildsite.s3.amazonaws.com/wordpress_images/r/wineDataset_Kmeans/Wine.csv
今天给大家简单的介绍经典的聚类学习算法,K均值算法。 K均值算法的R语言代码 # 加载R包 library(tidyverse) # data manipulation library(cluster) # clustering algorithms library(factoextra) # clustering algorithms & visualization # 数据准备 df <- USArrests # 数据缺失值处理 df <- na.omit(df) # 删除含有缺失值的样本
此项目的成员包括Brett Amdur,Christopher Redino和Amy (Yujing) Ma。他们毕业与今年1月11日至4月1日举办的为期十二周的纽约数据科学全职训练营。这篇文章基于他们的终期项目 —— 顶点项目(Capstone Project)而完成。点击此处可见原文。 I. 概述 此项目的主要内容是应用机器学习方法来判断简历中工作技能的匹配程度。一家机构向纽约数据科学研究院的学生陈述了此项目,他们希望找到合适的学生来完成项目。本文的三个作者接受了这个项目,他们当时都是研究院的全日制学生
读取数据常见错误: 在读取数据过程中可能遇到以下问题,参照上一篇博客: 可能遇到报错: 1、Error in if (is.na(n) || n > 65536L) stop(“size cannot be NA nor exceed 65536”) : missing value where TRUE/FALSE needed 没有处理数据转化距离。 2、Error in hclust(dist(test)) : NA/NaN/Inf in foreign function call (arg
它起初是为了解决他们课题组自己的tRNA相关转录组测序表达量矩阵的归一化标准化问题,之前的文章是Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat Commun. 2020 Aug 14;11(1):4104. doi: 10.1038/s41467-020-17879-x. 对应的数据集是GSE141436. 是一个tRNA expression dataset ,里面有 21 different samples from seven mouse tissues ,这样的矩阵确实是超出了我的能力范围:
今天和大家一起学习一种可视化技术:构建树状热力图treemap。树形图易于可视化,且易于被人理解。树状图通过展示不同大小的矩形,以传达不同大小的数据量,一般认为,较大的矩形意味着占总体的一大部分,而较小的矩形意味着整体的一小部分。在本文中,云朵君将和大家一起学习如何使用Squarify库在 Python 中构建树形图。
fviz_pca_ind是factoextra里面用来可视化PCA结果的一个参数,具体见PCA主成分分析实战和可视化 | 附R代码和测试数据。
领取专属 10元无门槛券
手把手带您无忧上云