选自TowardsDataScience 作者:Francesco Zuppichini 机器之心编译 处理并使用数据集是深度学习任务非常重要的组成部分。...概述 使用 Dataset 需要遵循三个步骤: 载入数据:为数据创建一个数据集实例。 创建一个迭代器:通过使用创建的数据集构建一个迭代器来对数据集进行迭代。...使用数据:通过使用创建的迭代器,我们可以找到可传输给模型的数据集元素。 载入数据 我们首先需要一些可以放入数据集的数据。...创建迭代器 我们已经学会创建数据集了,但如何从中获取数据呢?我们必须使用迭代器(Iterator),它会帮助我们遍历数据集中的内容并找到真值。有四种类型的迭代器。...然后,我们在 sess 中运行 initializer 操作,以传递数据,这种情况下数据是随机的 numpy 数组。
一、为什么数据集对AIGC如此重要? 1. 数据决定模型的知识边界 AIGC模型依赖于大量数据进行训练,以学习输入与输出之间的复杂映射关系。如果数据覆盖面不足,模型将难以生成多样化、创新性的内容。...六、案例分析:构建图文生成模型的训练集 以构建一个面向文案生成的图文生成模型为例,数据集构建流程如下: 从多个平台爬取图文内容(如电商图片和商品描述)。 对爬取的数据进行去噪和格式统一。...自动化对齐图文关系,手动检查标注的准确性。 利用增强方法增加样本量。 设计多语言版本的训练集以支持多语言生成。...数据集的重要性:如何构建AIGC训练集 在人工智能生成内容(AIGC)的领域,数据集是模型性能的基石。无论是图像生成、文本生成,还是多模态生成,数据集的质量直接决定了生成结果的表现力和应用价值。...数据增强:提升数据集的多样性和覆盖面。 数据分析与验证:评估数据的质量和分布情况,确保无偏差。 二、数据采集:如何获取原始数据?
在人工智能领域,证明一个模型的有效性,就是对于某一问题,有一些数据,而我们提出的模型可以(部分)解决这个问题,那如何来证明呢?...如何划分训练集、验证集和测试集 这个问题其实非常基础,也非常明确,在Scikit-learn里提供了各种各样的划分方法。...前人给出训练集、验证集和测试集 对于这种情况,那么只能跟随前人的数据划分进行,一般的比赛也是如此。...前人没有明确给出数据集的划分 这时候可以采取第一种划分方法,对于样本数较小的数据集,同样可以采取交叉验证的方法。...只需要把数据集划分为训练集和测试集即可,然后选取5次试验的平均值作为最终的性能评价。 验证集和测试集的区别 那么,训练集、校验集和测试集之间又有什么区别呢?
获取sklearn本地的数据集 from sklearn.datasets import load_iris li = load_iris() print("数据集描述为:") print(li.DESCR...) print("目标描述名为:") print(li.target_names) 从网络获取数据集 from sklearn.datasets import fetch_20newsgroups #...从网络获取大的数据集 news = fetch_20newsgroups(subset="all") print("打印所有获取的数据:") print(news.data) 划分训练集和测试集...li = load_iris() # 将数据划分为训练集特征值,训练集目标值, 测试集特征值, 测试集目标值 train_data,test_data,train_target,test_target...("训练集目标值数据:") print(train_target) print("测试集特征值数据:") print(test_data) print("测试值目标值数据:") print(test_target
之前用过sklearn提供的划分数据集的函数,觉得超级方便。...但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是“pytorch split dataset”之类的,但是搜出来还是没有我想要的。...我的天,为什么超级开心hhhh。终于不用每次都手动划分数据集了。...class torch.utils.data.ConcatDataset: 连接不同的数据集以构成更大的新数据集。...torch.utils.data.random_split(dataset, lengths): 按照给定的长度将数据集划分成没有重叠的新数据集组合。
大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表,...即所谓的“程序数据集”,FineReport的帮助文档上给了一个示例: 1 package com.fr.data; 2 3 import java.sql.Connection...15 private String[] columnNames = null; 16 // 定义程序数据集的列数量 17 private int columnNum...: 1、db连接串硬编码写死在代码里,维护起来不太方便,目前大多数b/s应用,对于数据库连接,通常是利用spring在xml里配置datasource bean,运行时动态注入 2、将查询出的结果,填充到数据集时...但对于复杂的汇总统计报表,展示的数据通常不会太多,所以这个问题我个人看来并不严重。
“哈哈,我们在训练我们的模型并且希望得到更加准确的结果,但基于实际的情况(比如算力、时间),往往会按照一定策略来选择。...本文介绍了几种常见的数据集划分与交叉验证的方法策略以及它们的优缺点,主要包括了Train-test-split、k-fold cross-validation、Leave One Out Cross-validation...等,包括了代码层的实现与效果的比较,比较适合综合阅读一次。
(有关如何开始使用处理和分析工具的更多信息,请参阅下面的“故障排除”小节) 合作以节省时间和金钱 8.使用开源样本,尤其是大样本(例如,数百或数千个受试者)对于单个研究者来说可能是繁重的。...a.成像和行为数据的缺失可能会影响分析,因此应该进行调查,以获得可供分析的最终样本。 i.如果数据缺失,确定这将如何影响分析。 ii.有多种方法来处理丢失的数据(即列表删除、成对删除、插补) 。...c.一些开放样本包含多个贡献站点(例如,ARLIVE I/II,ABCD,UK-Biobank);确定站点是否以系统的方式不同而影响分析(见“故障排除”等,当数据中出现混淆时该如何处理)。...xii.例如,应包括提供成像采集参数、预处理管道和行为测量的总结,以及如何使用和分析数据的描述。 预期结果 我们有详细的步骤,如何在数据生命周期的所有阶段使用开源数据集。...问题2: 我是我的大学里为数不多的神经影像研究人员之一——我如何才能与其他研究人员合作?(开始前,步骤9)。
———献给看着Kobe打球长大的所有人 在2011年的时候,一位球迷为科比设计了一款T恤,样式上并无特别之处,文字上却打动人心,设计者在T恤上写道:“那些现在恨我的人,当我离开的时候,会想念我的。”...作为看着飞侠打球长大的90后,实在感到很悲伤,一代传奇即将落幕!下面笔者,通过科比整个职业生涯的数据来简单分析下飞侠与其他传奇巨星的对比及职业生涯状态的变化!...技术说明:R语言抓取数据,数据来源:http://stats.nba.com/ 以下是对科比以往比赛成绩数据的简单分析 一、抓取Kobe数据并对原始数据进行处理 利用R语言抓取科比职业生涯20个赛季的数据...二、Kobe数据分析 1、Kobe与乔丹差别在哪里?看下图: 两人除了在三分球数据上有点较大的出入外,其它数据二人旗鼓相当,NBA历史上最伟大SG,非两人莫属!...其它分类,感兴趣的童鞋可以去自己探索,这里时间有限就不再继续了!想要数据的童鞋,可以加笔者微信(lhf_Peter)索要! 最后:你巅峰时我慕名而来,你落寞时我无法转身离开! 送给Kobe……
大家好,我是皮皮。...一、前言 前几天在Python最强王者交流群【此类生物】问了一个Pandas处理的问题,提问截图如下: 部分数据截图如下所示: 二、实现过程 这里【隔壁山楂】和【瑜亮老师】纷纷提出,先不聚合location...location', 'total_cases']].apply(lambda x: x.values.tolist()).to_dict() 可以得到如下预期结果: 先取值,最后转成字典嵌套列表的,...三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【此类生物】提问,感谢【隔壁山楂】、【猫药师Kelly】、【瑜亮老师】给出的思路和代码解析,感谢【Python进阶者】、【Python狗】等人参与学习交流。
本文为你介绍,如何在 GPU 深度学习云服务里,上传和使用自己的数据集。 (由于微信公众号外部链接的限制,文中的部分链接可能无法正确打开。...文章发布后,有读者在后台提出来两个问题: 我没有外币信用卡,免费时长用完后,无法续费。请问有没有类似的国内服务? 我想使用自己的数据集进行训练,该怎么做? 第一个问题,有读者替我解答了。...解决了第一个问题后,我用 Russell Cloud 为你演示,如何上传你自己的数据集,并且进行深度学习训练。 注册 使用之前,请你先到 Russell Cloud 上注册一个免费账号。...通过一个实际的深度学习模型训练过程,我为你展示了如何把自己的数据集上传到云环境,并且在训练过程中挂载和调用它。...如果你对数据科学感兴趣,不妨阅读我的系列教程索引贴《如何高效入门数据科学?》,里面还有更多的有趣问题及解法。
1、训练集、验证集、测试集按比例精确划分#数据集划分import osimport randomroot_dir='....name) else: ftest.write(name)ftrainval.close()ftrain.close()fval.close()ftest .close()2、训练集、...验证集和测试集提取(只给出trian文件的提取方法)# -*- coding:UTF-8 -*-import shutilf_txt = open('D:\dataset\VOCdevkit\split...= 'D:\dataset\VOCdevkit\VOC2007\JPEGImages\\'+ imagename shutil.copy(imagepath,f_train) # 删除训练集和验证集...,剩余图片为测试集 # os.remove(imagepath)#处理Annotations同理只需将.jpg改为.xml参考:https://www.cnblogs.com/sdu20112013
来源:小一的学习笔记 今天分享一个比较简单的问题:数据集划分的三种方法。...数据集划分算是在数据分析建模中比较重要的,模型的好坏不但和训练数据有关,还和测试数据有关,当然,也和评估指标有关,不过今天先来看前者。 ▶什么是数据集和它的划分?...对于数据集的划分,我们通常要保证满足以下两个条件: 训练集和测试集的分布要与样本真实分布一致,即训练集和测试集都要保证是从样本真实分布中独立同分布采样而得; 训练集和测试集要互斥 对于数据集的划分有三种方法...▶自助法 留出法与交叉验证法都是使用 分层采样 的方式进行数据采样与划分,而自助法则是使用 有放回重复采样 的方式进行数据采样 自助法:我们每次从数据集D中取一个样本作为训练集中的元素,然后把该样本放回.../测试集时使用 自助法; 对于数据集小且可有效划分的时候最好使用 留一法 来进行划分,因为这种方法最为准确 『最常用』 当数据集划分完毕后,就需要建立相关模型,具体的模型算法可选的就很多了,前面都有介绍过
WenetSpeech数据集 10000+小时的普通话语音数据集,使用地址:PPASR WenetSpeech数据集 包含了10000+小时的普通话语音数据集,所有数据均来自 YouTube 和 Podcast...为了提高语料库的质量,WenetSpeech使用了一种新颖的端到端标签错误检测方法来进一步验证和过滤数据。...TEST_NET 23 互联网 比赛测试 TEST_MEETING 15 会议 远场、对话、自发和会议数据集 本教程介绍如何使用该数据集训练语音识别模型,只是用强标签的数据,主要分三步。...然后制作数据集,下载原始的数据是没有裁剪的,我们需要根据JSON标注文件裁剪并标注音频文件。...,跟普通使用一样,在项目根目录执行create_data.py就能过生成训练所需的数据列表,词汇表和均值标准差文件。
大家好,今天我们来聊一聊在 R 语言中如何提取内置数据集,以及如何使用著名 R 包中的数据集。相信很多同学在学习 R 语言时,都会遇到需要用数据集来做练习或者分析的情况。...以 MASS 包为例 MASS 是一个非常有名的统计学包,它内置了很多经典的数据集,比如 Cars93 数据集,它记录了 93 款汽车的各种属性,适合做多元回归等分析。...你可以通过类似的方法轻松加载并使用。 3. 如何找到更多的数据集?...无论是用于教学还是实际科研,Rdatasets 都是一个非常好的资源库。 如何使用 Rdatasets? Rdatasets 的使用非常简单,所有数据集都可以直接通过网络下载。...无论是 R 自带的 datasets,还是一些常见 R 包中的内置数据集,亦或是 Rdatasets 这种专门的仓库,都可以让我们轻松获取并使用各种数据集进行分析。
GLASS数据一般有三种分辨率,其一基于MODIS数据生产的1km分辨率的GLASS产品,第二种是通过1km聚合而成的0.05度的GLASS产品,还有一种就是通过AVHRR数据生产的0.05度的GLASS...上图就是以GLASS LAI产品为例,显示的三种GLASS数据。 介绍完GLASS数据以后,我们就要说一下如何下载使用它了。...国内可提供下载的网站是,国家地球系统科学数据中心,网址为:http://www.geodata.cn。 但是我们今天不推荐使用它进行下载GLASS数据,因为还要申请账号,挺麻烦的。...如果进行数据处理可以使用python中的pyHDF库,用起来还是蛮方便的。 需要注意的是,GLASS数据会把数据存储为整数,所以一般需要乘以一个尺度因子。这些信息也都存贮在HDF文件中。...我们可以通过hdfexp软件查看GLASS的元数据。
前言 从 ECharts4 支持数据集开始,更推荐使用数据集来管理数据。...https://echarts.apache.org/handbook/zh/concepts/dataset 数据集最大的特点就是数据和数据展示配置的分离。...以前我们都是在系列(series)中设置数据。...}, { type: 'bar', name: '2017', data: [97.7, 83.1, 92.5, 78.1] } ] }; 使用数据集后...,序列中只需要设置x,y展示的列即可。
主要包含以下几种类型的数据集: 小型玩具(样本)数据集 数据生成器生成数据集 API 在线下载网络数据集 2玩具(样本)数据集 sklearn 内置有一些小型标准数据集,不需要从某个外部网站下载任何文件...每10,000美元的全额物业税率 PTRATIO 城镇师生比例 B 1000(Bk - 0.63)^2 其中 Bk 是城镇的黑人比例 LSTAT 人口中地位较低人群的百分数 MEDV 以1000美元计算的自有住房的中位数...以下是一些常用的数据集: 4.120个新闻组文本数据集 20个新闻组文本数据集包含有关20个主题的大约18000个新闻组,被分为两个子集:一个用于训练(或者开发),另一个用于测试(或者用于性能评估)。...训练和测试集的划分是基于某个特定日期前后发布的消息。结果中包含20个类别。...fetch_20newsgroups 返回一个能够被文本特征提取器接受的原始文本列表,fetch_20newsgroups_vectorized 返回将文本使用tfidf处理后的特征矩阵。
为什么使用dataloader进行批训练 我们的训练模型在进行批训练的时候,就涉及到每一批应该选择什么数据的问题,而pytorch的dataloader就能够帮助我们包装数据,还能够有效的进行数据迭代,...以达到批训练的目的。...如何使用pytorch数据加载到模型 Pytorch的数据加载到模型是有一个操作顺序,如下: 创建一个dataset对象 创建一个DataLoader对象 循环这个DataLoader对象,将标签等加载到模型中进行训练...关于DataLoader DataLoader将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练 使用DataLoader...进行批训练的例子 打印结果如下: 结语 Dataloader作为pytorch中用来处理模型输入数据的一个工具类,组合了数据集和采样器,并在数据集上提供了单线程或多线程的可迭代对象,另外我们在设置
VOC数据集 ---- VOC数据集介绍 PASCAL VOC挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。...数据预处理 ---- 在之前的文章中可以知道,训练和测试的数据都是一个reader数据格式,所以我们要对我们的VOC数据集做一些处理。...;另一方面SSD对VGG16的扩展部分以较小的代价实现对候选框的位置和类别得分的计算,整个过程只需要一个卷积神经网络完成,所以速度较快。...: %f, Detection mAP=%g" % \ (result.cost, result.metrics['detection_evaluator']) 具体调用方法如下,可以看到使用的的数据集还是我们在训练时候使用到的测试数据...我的PaddlePaddle学习之路》笔记八——场景文字识别 下一章:《我的PaddlePaddle学习之路》笔记十——自定义图像数据集实现目标检测 项目代码 ---- GitHub地址:https:/
领取专属 10元无门槛券
手把手带您无忧上云