首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python入门之数据处理——12种有用的Pandas技巧

◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...2. .values[0]后缀是必需的,因为默认情况下元素返回的索引与原数据框的索引不匹配。在这种情况下,直接赋值会出错。 # 6. 交叉表 此函数用于获取数据的一个初始“感觉”(视图)。...解决这些问题的一个好方法是创建一个包括列名和类型的CSV文件。这样,我们就可以定义一个函数来读取文件,并指定每一列的数据类型。...加载这个文件后,我们可以在每一行上进行迭代,以列类型指派数据类型给定义在“type(特征)”列的变量名。 ? ? 现在的信用记录列被修改为“object”类型,这在Pandas中表示名义变量。

5K50

Pandas 秘籍:1~5

对于唯一值相对较少的对象列很有用。 准备 在此秘籍中,我们将显示数据帧中每一列的数据类型。 了解每一列中保存的数据类型至关重要,因为它会从根本上改变可能进行的操作的类型。...序列的视觉输出风格比数据帧少。 它代表一列数据。 连同索引和值一起,输出显示序列的名称,长度和数据类型。 或者,虽然不建议这样做,但可能会出错,但是可以使用带有列名作为属性的点表示法来访问数据列。...二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...在 Pandas 中,这几乎总是一个数据帧,序列或标量值。 准备 在此秘籍中,我们计算移动数据集每一列中的所有缺失值。...由于数据帧中有九列,因此每所学校的缺失值最大数目为九。 许多学校缺少每一列的值。 步骤 3 删除所有值均缺失的行。

37.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。...当一行的每列中都有一个值时,该行将位于最右边的位置。当该行中缺少的值开始增加时,该行将向左移动。 热图 热图用于确定不同列之间的零度相关性。换言之,它可以用来标识每一列之间是否存在空值关系。...接近正1的值表示一列中存在空值与另一列中存在空值相关。 接近负1的值表示一列中存在空值与另一列中存在空值是反相关的。换句话说,当一列中存在空值时,另一列中存在数据值,反之亦然。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。

    4.8K30

    Python探索性数据分析,这样才容易掌握

    将每个 CSV 文件转换为 Pandas 数据帧对象如下图所示: ? 检查数据 & 清理脏数据 在进行探索性分析时,了解您所研究的数据是很重要的。幸运的是,数据帧对象有许多有用的属性,这使得这很容易。...我们这份数据的第一个问题是 ACT 2017 和 ACT 2018 数据集的维度不一致。让我们使用( .head() )来更好地查看数据,通过 Pandas 库展示了每一列的前五行,前五个标签值。...为了比较州与州之间 SAT 和 ACT 数据,我们需要确保每个州在每个数据帧中都被平等地表示。这是一次创新的机会来考虑如何在数据帧之间检索 “State” 列值、比较这些值并显示结果。...我的方法如下图展示: ? 函数 compare_values() 从两个不同的数据帧中获取一列,临时存储这些值,并显示仅出现在其中一个数据集中的任何值。...这种类型转换的第一步是从每个 ’Participation’ 列中删除 “%” 字符,以便将它们转换为浮点数。下一步将把除每个数据帧中的 “State” 列之外的所有数据转换为浮点数。

    5.1K30

    POLARDB IMCI 白皮书 云原生HTAP 数据库系统 一 列式数据是如何存储与处理的

    PolarDB-IMCI将表的所有行分为多个行组,并进行追加式写入以提高写入性能。在行组中,数据的每一列都与一些统计元数据一起组织成数据包。...也就是说,在不更改部分包的情况下生成一个新的数据包,PolarDB-IMCI在压缩后更新元数据,以将部分包替换为新的数据包(即原子地更新指向新数据包的指针)。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。...也就是说,在不更改部分包的情况下生成一个新的数据包,PolarDB-IMCI在压缩后更新元数据,以将部分包替换为新的数据包(即原子地更新指向新数据包的指针)。...对于各种数据类型,列索引采用不同的压缩算法。数字列采用参考帧、增量编码和位压缩压缩的组合,而字符串列使用字典压缩。

    22850

    直观地解释和可视化每个复杂的DataFrame操作

    Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ? 结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...记住:合并数据帧就像在水平行驶时合并车道一样。想象一下,每一列都是高速公路上的一条车道。为了合并,它们必须水平合并。...因此,它接受要连接的DataFrame列表。 如果一个DataFrame的另一列未包含,默认情况下将包含该列,缺失值列为NaN。

    13.4K20

    Pandas 秘籍:6~11

    六、索引对齐 在本章中,我们将介绍以下主题: 检查索引对象 生成笛卡尔积 索引爆炸 用不相等的索引填充值 追加来自不同数据帧的列 突出显示每一列的最大值 用方法链复制idxmax 寻找最常见的最大值 介绍...也完全可以将数据帧一起添加。 将数据帧加在一起将在计算之前对齐索引和列,并产生不匹配索引的缺失值。 首先,从 2014 年棒球数据集中选择一些列。...由于两个数据帧的索引相同,因此可以像第 7 步中那样将一个数据帧的值分配给另一列中的新列。 更多 从步骤 2 开始,完成此秘籍的另一种方法是直接从sex_age列中分配新列,而无需使用split方法。...默认情况下,在数据帧上调用plot方法时,pandas 尝试将数据的每一列绘制为线图,并使用索引作为 x 轴。...query方法在方法链中使用时特别好,因为它可以清晰,简洁地选择给定条件的所需数据行。 进入plot方法时,数据帧中有两列,默认情况下,该方法将为每一列绘制条形图。

    34.2K10

    整理了25个Pandas实用技巧

    和read_csv()类似,read_clipboard()会自动检测每一列的正确的数据类型: ? 让我们再复制另外一个数据至剪贴板: ? 神奇的是,pandas已经将第一列作为索引了: ?...你还可以检查每部电影的索引,或者"moives_1": ? 或者"moives_2": ? 需要注意的是,这个方法在索引值不唯一的情况下不起作用。...你将会注意到有些值是缺失的。 为了找出每一列中有多少值是缺失的,你可以使用isna()函数,然后再使用sum(): ?...数据透视表的另一个好处是,你可以通过设置margins=True轻松地将行和列都加起来: ? 这个结果既显示了总的存活率,也显示了Sex和Passenger Class的存活率。...我们可以通过链式调用函数来应用更多的格式化: ? 我们现在隐藏了索引,将Close列中的最小值高亮成红色,将Close列中的最大值高亮成浅绿色。 这里有另一个DataFrame格式化的例子: ?

    2.8K40

    整理了25个Pandas实用技巧(下)

    将DataFrame划分为两个随机的子集 假设你想要将一个DataFrame划分为两部分,随机地将75%的行给一个DataFrame,剩下的25%的行给另一个DataFrame。...或者"moives_2": 需要注意的是,这个方法在索引值不唯一的情况下不起作用。...为了找出每一列中有多少值是缺失的,你可以使用isna()函数,然后再使用sum(): isna()会产生一个由True和False组成的DataFrame,sum()会将所有的True值转换为1,False...类似地,你可以通过mean()和isna()函数找出每一列中缺失值的百分比。...数据透视表的另一个好处是,你可以通过设置margins=True轻松地将行和列都加起来: 这个结果既显示了总的存活率,也显示了Sex和Passenger Class的存活率。

    2.4K10

    Pandas库

    它是一个二维表格结构,可以包含多列数据,并且每列可以有不同的数据类型。 DataFrame提供了灵活的索引、列操作以及多维数据组织能力,适合处理复杂的表格数据。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...使用apply()函数对每一行或每一列应用自定义函数。 使用groupby()和transform()进行分组操作和计算。...数据重塑(Data Reshaping) : 数据重塑是将数据从一种格式转换为另一种格式的过程,常见的方法有pivot和melt。这些方法可以用于将宽表数据转换为长表数据,或者反之。...Pandas作为Python中一个重要的数据分析库,相较于其他数据分析库(如NumPy、SciPy)具有以下独特优势: 灵活的数据结构:Pandas提供了两种主要的数据结构,即Series和DataFrame

    16110

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    我们先选择其中一个object列,开看看将其转换成类别类型会发生什么。这里我们选用第二列:day_of_week。 我们从上表中可以看到,它只包含了7个唯一值。...这一列没有任何缺失数据,但是如果有,category子类型会将缺失数据设为-1。 最后,我们来看看这一列在转换为category类型前后的内存使用量。...下面我们写一个循环,对每一个object列进行迭代,检查其唯一值是否少于50%,如果是,则转换成类别类型。...dtype参数接受一个以列名(string型)为键字典、以Numpy类型对象为值的字典。 首先,我们将每一列的目标类型存储在以列名为键的字典中,开始前先删除日期列,因为它需要分开单独处理。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型

    8.8K50

    在Python机器学习中如何索引、切片和重塑NumPy数组

    在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...有关示例,请参阅帖子: 如何在Python中加载机器学习的数据 本节假定你已经通过其他方式加载或生成了你的数据,现在使用Python列表表示它们。 我们来看看如何将列表中的数据转换为NumPy数组。...这是一个数据表,其中每一行代表一个新的发现,每一列代表一个新的特征。 也许你通过使用自定义代码生成或加载数据,现在你有了二维列表。每个列表表示一个新发现。...例如,一些库(如scikit-learn)可能需要输出变量(y)中的一维数组被重塑为二维数组,该二维数组由一列及每列对应的结果组成。...reshape()函数接受一个参数,该参数指定数组的新形状。将一维数组重塑为具有一列的二维数组,在这种情况下,该元组将作为第一维(data.shape[0])中的数组形状和第二维的中1。

    19.2K90

    独家|OpenCV 1.2 如何用OpenCV扫描图像、查找表和测量时间(附链接)

    此外,需要注意的是,上述操作的输入值的数量是有限的,对于UCHAR数据类型,准确地来讲,输入值的数量为256。 对于较大的图像,则是通过使用查找表,将事先计算好所有可能的值在赋值阶段直接进行赋值操作。...还有另一种方式:Mat 对象的数据成员data 会返回指向第一行、第一列的指针。如果这个指针为空,则这一对象中不存在有效的输入。利用这种简单的方法,可以检查图像是否成功加载。...对于彩色图像来说,每一列包含三个UCHAR数据项,可以将这三个数据项视为一个 UCHAR数据类型的短向量,在 OpenCV中,称之为 Vec3b。用简单的操作符[]访问第n个子列。...需要记住的重点是:OpenCV的迭代器遍历这些列,并会自动跳到下一行。因此,在彩色图像的情况下,如果采用一个简单的UCHAR迭代器,只能访问到蓝色通道的值。...利用引用返回值计算即时地址 不推荐采用最后一种方法扫描图像。利用这种方法可以访问或修改图像中的随机像素,基本的用法是:指定需要访问元素所在的行数和列数。

    93610

    70个NumPy练习:在Python下一举搞定机器学习矩阵运算

    输入: 输出: 答案: 6.如何替换满足条件的元素而不影响原始数组? 难度:2 问题:将arr数组中的所有奇数替换为-1而不更改arr数组 输入: 输出: 答案: 7.如何重塑数组?...输入: 答案: 22.如何使用科学记数法(如1e10)漂亮地打印一个numpy数组?...难度:1 问题:将python numpy数组a中打印的元素数量限制为最多6个。 输入: 输出: 答案: 24.如何在不截断的情况下打印完整的numpy数组?...答案: 44.如何按列排序二维数组? 难度:2 问题:根据sepallength列对iris数据集进行排序。 答案: 45.如何在numpy数组中找到最频繁出现的值?...难度:2 问题:查找在iris数据集的第4列花瓣宽度中第一次出现值大于1.0的位置。 答案: 47.如何将所有大于给定值的值替换为给定的cutoff值?

    21.1K42

    Python的Datatable包怎么用?

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...Datatable初教程 为了能够更准确地构建模型,现在机器学习应用通常要处理大量的数据并生成多种特征,这已成为必要的。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    6.8K30

    Python的Datatable包怎么用?

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...Datatable初教程 为了能够更准确地构建模型,现在机器学习应用通常要处理大量的数据并生成多种特征,这已成为必要的。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    7.3K10

    Extreme DAX-第4章 上下文和筛选

    定义计算列的 DAX 公式在表中的每一行分别计算一次。计算结果通常特定于对应的行。原因是,同一表中其他列中的值被用在计算中,而这些值在每行中一般是不同的。...TotalShipping = CALCULATE(SUM(fSales[ShippingCosts])) Date 表中的行上下文将转换为筛选上下文,该筛选上下文对表的每一列都具有筛选作用。...GENERATE 函数创建了一个表,其中包含两个 VALUES 表达式中的值组合,因此生成的表中的每一列都具有与相应的模型列一致的数据沿袭。 大多数表函数会保留它们来源的列的数据沿袭。...如果是这样,则结果表中的列与模型中的任何现有的列都没有数据沿袭。 在某些情况下,您也可能希望虚拟表的数据沿袭与默认值不同。...我们可以在 ROW 表达式中将列命名为我们想要的任何名称。TREATAS 也适用于多列的表,在这种情况下,应为创建的表中的每一列指定一个模型中的列。

    5.8K21

    一文入门Python的Datatable操作

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...Datatable初教程 为了能够更准确地构建模型,现在机器学习应用通常要处理大量的数据并生成多种特征,这已成为必要的。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() ‍下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示:...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable

    7.7K50

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。...对于多列或者整个DataFrame 如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1

    20.5K30

    DAX中的基础表函数

    通过简单地为表达式指定一个名称,你可以很好地记录并理解代码。 在计算列或迭代中,还可以使用RELATEDTABLE函数检索相关表的所有行。...在这种情况下,ALL函数返回该列在整个表中的所有不重复值。...子类别 05 理解VALUES、DISTINCT函数和空行 上一节介绍了ALL函数在使用一列作为参数时可以返回所有唯一值列表,DAX还提供了另外两个类似的函数用来返回一列的唯一值,即VALUES和DISTINCT...当关系有效时,它们的结果没有任何区别。在这种情况下,你需要将迭代中的空行视为有效行,以确保迭代所有可能的值。...这种方案只适用于品牌存在唯一值的情况。实际上,在这种情况下,使用VALUES函数返回结果是可行的,DAX会自动将其转换为标量值。

    2.7K10
    领券