首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在字典中创建值的外观直方图?

这个问题的答案要求创建一个字典值的外观直方图,可以通过使用字典和Python中的matplotlib库来实现。首先,需要安装matplotlib库,可以使用以下命令:

代码语言:txt
复制
pip install matplotlib

然后,可以使用以下代码创建字典值的外观直方图:

代码语言:python
代码运行次数:0
复制
import matplotlib.pyplot as plt

# 创建字典
data = {'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50], 'C': [100, 200, 300, 400, 500]}

# 计算每个值的出现次数
counts = {}
for key, value in data.items():
    counts[value] = counts.get(value, 0) + 1

# 绘制直方图
plt.hist(list(counts.values()), bins=list(counts.keys()), edgecolor='black', color='b')
plt.title("字典值外观直方图")
plt.xlabel("值")
plt.ylabel("出现次数")
plt.show()

这段代码首先创建了一个字典,其中包含了每个值的出现次数。然后,使用matplotlib库中的hist函数绘制直方图,将每个值的出现次数作为输入,并将值和出现次数作为标签。最后,使用titlexlabelylabel函数添加标题和坐标轴标签,并使用show函数显示图形。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【DB笔试面试634】在Oracle中,什么是直方图(Histogram)?直方图的使用场合有哪些?

    在Oracle数据库中,CBO会默认认为目标列的数据在其最小值(LOW_VALUE)和最大值(HIGH_VALUE)之间是均匀分布的,并且会按照这个均匀分布原则来计算对目标列施加WHERE查询条件后的可选择率以及结果集的Cardinality,进而据此来计算成本值并选择执行计划。但是,目标列的数据是均匀分布这个原则并不总是正确的,在实际的生产系统中,有很多表的列的数据分布是不均匀的,甚至是极度倾斜、分布极度不均衡的。对这样的列如果还按照均匀分布的原则去计算可选择率与Cardinality,并据此来计算成本、选择执行计划,那么CBO所选择的执行计划就很可能是不合理的,甚至是错误的,所以,此时应该收集列的直方图。

    05

    【DB笔试面试635】在Oracle中,直方图分为哪几类?

    Oracle数据库里的直方图使用了一种称为Bucket(桶)的方式来描述目标列的数据分布。Bucket(桶)是一个逻辑上的概念,相当于分组,每个Bucket就是一组,每个Bucket里会存储一个或多个目标列中的数据。Oracle会用两个维度来描述一个Bucket,这两个维度分别是ENDPOINT_NUMBER和ENDPOINT_VALUE,Oracle会将每个Bucket的这两个维度记录在数据字典基表SYS.HISTGRM$中。列的直方图的类型可以通过查询视图DBA_TAB_COL_STATISTICS的HISTOGRAM列来获取,一般情况下包含3类,NONE(没有直方图)、FREQUENCY(频率直方图,也叫等频直方图)、HEIGHT BALANCED(高度平衡直方图,也叫等高直方图)。在Oracle 12c中,又新增了两种类型的直方图,分别是顶级频率直方图(Top Frequency Histogram)和混合直方图(Hybrid Histogram),本书只讨论频率和高度平衡直方图。

    01

    一个执行计划异常变更的案例 - 外传之SQL Profile(上)

    之前的几篇文章: 《一个执行计划异常变更的案例 - 前传》 《一个执行计划异常变更的案例 - 外传之绑定变量窥探》 《一个执行计划异常变更的案例 - 外传之查看绑定变量值的几种方法》 《一个执行计划异常变更的案例 - 外传之rolling invalidation》 《一个执行计划异常变更的案例 - 外传之聚簇因子(Clustering Factor)》 《一个执行计划异常变更的案例 - 外传之查询执行计划的几种方法》 《一个执行计划异常变更的案例 - 外传之AWR》 《一个执行计划异常变更的案例 - 外传之ASH》 《一个执行计划异常变更的案例 - 外传之SQL AWR》 《一个执行计划异常变更的案例 - 外传之直方图》

    02

    技术分享 | 大数据可视化的五大发展趋势

    在这个信息爆炸的时代,借助图形化的手段,高效和清晰的交流信息是数据可视化的目的所在,作为一种信息载体,她拥有对数据的多种表现形式,可以是美丽的且带有趣味性的,以前对于数据在图形上表现只是停留在饼图、柱状图和直方图等简单的视觉表现形式上,为了更加有效的传达数据信息,帮助用户理解引起共鸣,依附与目前多媒体的科技手段,可视化的表现形式从平面到三维,媒介形式从纸张到网络以及视频,在互动性及时效性上都不断发生着变化。 当然,之所以将数据的外衣称之为美,也并不意味这对于她的表现仅仅只是拥有华丽的视觉外观而已,而更重要

    05

    最近的几个技术问题总结和答疑(九)(r10笔记第16天)

    最近的琐事比较多,而提问题的朋友还是不少,很多消息都没有来得及回复,各种事情一堆起来,不少问题想起来已经过了好几天了,所以还是来整理一篇技术问答为好。 首先是很多朋友问我关于半自动化搭建Data Guard的脚本,我写了几篇文章来介绍思路,自己也提了不少的改进,团队内部也沟通过了,一直迟迟没有发布出来是因为我觉得目前的实现方式可能对于我的工作能够极大提高,但是很多朋友使用的环境可能没有中控的概念,所以不是很通用,所以我想做一些改变,还有一个是里面的有些逻辑我想改改,至少简化一下。但是一直是思想的前行

    04
    领券