首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用

模型选择:包括交叉验证、超参数搜索等。 分类、回归、聚类模型:提供多种常见的机器学习模型。 模型评估:提供评估指标、混淆矩阵、ROC曲线等工具。 4....2.1 多模型比较 我们可以使用交叉验证来比较不同模型的性能。以下代码展示了如何在鸢尾花数据集上比较多个模型的表现。...2.2 混淆矩阵与分类报告 除了使用交叉验证的平均准确率,我们还可以使用混淆矩阵和分类报告来更详细地分析模型的性能。...处理不平衡数据集 在实际应用中,不平衡数据集是非常常见的问题。当一个类别的样本远多于其他类别时,模型可能会倾向于预测多的那个类别,从而忽视了其他类别的预测。...模型评估与优化 尽管我们通过简单的准确率评估了模型的表现,但在实际项目中,我们通常需要更深入的模型评估方法,如混淆矩阵、分类报告、交叉验证等。

51910

西瓜书概念整理(chapter 1-2)熟悉机器学习术语

每次用k-1个子集的并集作为训练集,余下的那个子集作为测试集,这样就可以获得k组训练/测试集,最终返回k个测试结果的均值,交叉验证评估结果的稳定性和保真性很大程度上取决于k的取值,通常称之为k折交叉验证..., 然后再将该样本放回D中,下次可能再被采到,这个过程执行m次后,得到包含m个样本的数据集D’,m足够大时,有36.8%的样本不会被采到,于是可以用没采到的部分做测试集。...micro-F1 Page32: 微查准率 将各混淆矩阵的对应元素进行平均,再去计算 Page32: 微查全率 将各混淆矩阵的对应元素进行平均,再去计算 Page33: ROC曲线(46) 真正例率...Page40: 交叉验证成对t校验(paired t-tests) 对两个学习器A和B,使用k折交叉验证法分别得到k个测试错误率,如果两个学习器性能相同,则使用相同训练/测试集时测试错误率应该相同,求两个学习器的...Page41: 5x2交叉验证 由于交叉验证中,不同轮次的训练集之间有一定程度的重复,会过高估计假设成立的概率,因此做5次2折交叉验证,每次验证前将数据打乱,对5次2对2个学习器的测试错误率求差值,对所有差值求方差

1.4K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习入门基础知识汇总

    随着数据量的快速增长和计算能力的提升,机器学习在各个领域都有着广泛的应用,如金融、医疗、自动驾驶等。在学习机器学习的过程中,掌握一些基础知识是非常重要的。...本文将介绍机器学习的核心概念、常见算法以及如何在实际问题中应用这些知识。机器学习基础概念1. 监督学习与无监督学习机器学习可以根据学习过程中是否有标签信息,分为监督学习和无监督学习。...交叉验证(Cross-Validation)交叉验证是一种常见的评估模型性能的方法。它通过将数据集分为多个子集,轮流使用每个子集作为测试集,其他子集作为训练集,从而提高评估的可靠性。...混淆矩阵(Confusion Matrix)混淆矩阵用于评估分类模型的表现,尤其是在不平衡数据集上。它展示了真实标签与预测标签之间的对比。示例代码: 使用混淆矩阵评估分类模型。...掌握这些基础知识,能够帮助你在今后的机器学习学习和应用中更加得心应手。希望通过本文,你能获得对机器学习的基本理解,并能够使用Python进行实际操作,开始你的机器学习之旅!

    19710

    Scikit-Learn机器学习要点总结

    例如,在数据预处理过程中,fit() 方法可以计算并保存一些统计值(如均值、方差等)以供后续使用。 transform():这个方法将学习到的模型参数应用于数据,对数据进行转换。...= metrics.confusion_matrix(y_test,y_pred) # 混淆矩阵(注意与上面示例的混淆矩阵的图位置并不一一对应) #recall_score = metrics.recall_score...KFold()函数通常配合交叉验证函数(如 cross_val_score())一起使用,以评估模型的性能。...cv:用于交叉验证的折数,默认为 5,可以是一个整数或者交叉验证生成器对象。 refit:布尔值,表示是否在搜索结束后重新训练最佳模型,并将其保存在 estimator 中。...如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。

    12610

    【视频讲解】CatBoost、LightGBM和随机森林的海域气田开发分类研究|数据分享

    交叉验证可视化的代码数据,为读者提供一套完整的实践数据分析流程。...通过混淆矩阵评估了三种模型的分类预测性能,包括准确率、精确度、召回率和F1得分。 5....python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化 离职率是企业保留人才能力的体现。...了解数据集的分布 划分训练集和测试集 以样本中测试集占比百分之二十的比例训练模型 summary(dftrain) 建模 使用Stratified K-Fold交叉验证来进行模型评估 def cross_valtion...通过交叉验证和可视化技术,我们可以评估模型的性能和稳定性,并为实际应用提供可靠的预测结果。

    9510

    9,模型的评估

    模块中的交叉验证相关方法可以评估模型的泛化能力,能够有效避免过度拟合。...二,分类模型的评估 模型分类效果全部信息: confusion_matrix 混淆矩阵,误差矩阵。 ? 模型整体分类效果: accuracy 正确率。通用分类评估指标。...当数据集的来源有不同的分组时,独立同分布假设(independent identical distributed:i.i.d)将被打破,可以使用分组交叉验证方法保证训练集的数据来自各个分组的比例和完整数据集一致...可以指定metrics中的打分函数,也可以指定交叉验证迭代器。 ? ?...使用cross_val_predict可以返回每条样本作为CV中的测试集时,对应的模型对该样本的预测结果。 这就要求使用的CV策略能保证每一条样本都有机会作为测试数据,否则会报异常。 ?

    69531

    监督学习6大核心算法精讲与代码实战

    1.4 监督学习的挑战 尽管监督学习在许多应用中表现出色,但它也面临一些挑战: 数据标注成本高:获取大量高质量的标注数据通常需要耗费大量的人力和时间。...模型泛化能力:训练模型如何在未见过的数据上表现良好,即避免过拟合。 数据偏差和公平性:训练数据中的偏差可能导致模型在实际应用中表现不公平。...K折交叉验证的具体步骤如下: 将数据集随机分成K个大小相等的子集。 对于每个子集: 将该子集作为验证集,其余子集作为训练集。 训练模型并在验证集上评估模型性能。 计算所有K次评估的平均性能。...欠拟合的常见原因包括: 模型复杂度过低 特征数量不足 训练时间不足 解决欠拟合的方法包括: 增加模型复杂度(如增加特征数量或使用更复杂的模型) 提高特征质量 延长训练时间 3.3 混淆矩阵与分类报告 混淆矩阵...代码示例 以下是使用Python和Scikit-learn库实现混淆矩阵、分类报告、ROC曲线和AUC的示例代码: import numpy as np import matplotlib.pyplot

    48521

    机器学习实战 | 第四章:模型验证和选择

    .返回交叉验证评估的分数.返回值是array类型,形状为(len(list(cv)),) 参数: estimator : 实现了”fit”的”估计”对象,用来拟合数据.其实就是相应的分类器或者是回归器对象...scoring : 字符串或者可调用的对象.可选,默认为None. cv : 整形,交叉验证生成器,或者是一个可以迭代的类型....可选.这个参数决定了交叉验证的分裂策略.可能的输入方式有: None:使用默认的3折交叉验证. 某个整数: 指明了多少折交叉验证....用来作为交叉验证生成器的某个对象. n_jobs : 整形,可选.表示用来计算的CPU的数量.当设为-1的时候,表示使用所有的CPU....例1: 1.import numpy as np 这里选择的是alpha=1.0的岭回归算法.采用10折交叉验证计算损失.所以,将返回一个10维的数组,每个维度表示原数据集其中的某一份做验证集时的损失.

    1.4K50

    常见的三种方法总结

    所以简单的拆分只能帮助我们开发和调试,真正的训练还不够完善,所以下面这些拆分方法可以帮助u我们结束这些问题。 K折交叉验证 将数据集拆分为k个分区。在下面的图像中,数据集分为5个分区。...问题: 如果有不平衡的数据集,请使用Stratified-kFold 如果在所有数据集上重新训练一个模型,那么就不能将其性能与使用k-Fold进行训练的任何模型进行比较。...Stratified-kFold创建的每个折中分类的比率都与原始数据集相同 这个想法类似于K折的交叉验证,但是每个折叠的比率与原始数据集相同。 每种分折中都可以保留类之间的初始比率。...如果您的数据集很大,K折的交叉验证也可能会保留比例,但是这个是随机的,而Stratified-kFold是确定的,并且可以用于小数据集。...总结 通常在机器学习中,使用k折交叉验证作为开始,如果数据集不平衡则使用Stratified-kFold,如果异常值较多可以使用Bootstrap或者其他方法进行数据分折改进。 编辑:于腾凯

    88910

    Rasa 聊天机器人专栏(五):模型评估

    如果传递单个文件并选择交叉验证模式,交叉验证执行,如果传递多个配置或配置的文件夹,模型将直接被训练和比较。(默认:None) Python日志选项: -v, --verbose 详细输出。...f1-score图表、所有训练/测试集、训练模型、分类和错误报告将保存到名为nlu_comparison_results的文件夹中。 意图分类 评估命令将为你的模型生成报告,混淆矩阵和置信度直方图。...注意:只有在测试集上评估模型时,才会创建混淆矩阵。在交叉验证模式下,将不会生成混淆矩阵。 警告:如果你的任何实体被错误地注释,你的评估可能会失败。一个常见问题是实体无法在标记内停止或启动。...此外,这会将混淆矩阵保存到名为results/story_confmat.pdf的文件中。对于你域中的每个操作,混淆矩阵会显示操作的正确预测频率以及预测错误操作的频率。...所有在提供的目录中模型被评估和互相比较。(默认值:False) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。

    2.3K31

    常见的三种方法总结

    可以使用Scikit的随机采样来执行此操作。 首先需要固定随机种子,否则无法比较获得相同的数据拆分,在调试时无法获得结果的复现。如果数据集很小,则不能保证验证拆分可以与训练拆分不相关。...问题: 如果有不平衡的数据集,请使用Stratified-kFold 如果在所有数据集上重新训练一个模型,那么就不能将其性能与使用k-Fold进行训练的任何模型进行比较。...Stratified-kFold创建的每个折中分类的比率都与原始数据集相同 这个想法类似于K折的交叉验证,但是每个折叠的比率与原始数据集相同。 每种分折中都可以保留类之间的初始比率。...如果您的数据集很大,K折的交叉验证也可能会保留比例,但是这个是随机的,而Stratified-kFold是确定的,并且可以用于小数据集。...总结 通常在机器学习中,使用k折交叉验证作为开始,如果数据集不平衡则使用Stratified-kFold,如果异常值较多可以使用Bootstrap或者其他方法进行数据分折改进。

    1.3K10

    MATLAB中的机器学习算法选择与模型评估

    模型评估:支持交叉验证、混淆矩阵、ROC曲线等评估指标。2. 数据准备在进行机器学习之前,数据的准备至关重要。通常包括数据的加载、清洗和预处理。以下是一个示例,展示如何加载数据并进行预处理。...模型评估在模型训练完成后,评估模型的性能是非常重要的一步。我们可以使用混淆矩阵、准确率、召回率等指标。4.1 混淆矩阵混淆矩阵可以帮助我们理解模型的分类性能。...交叉验证交叉验证是评估模型性能的常用方法,可以帮助我们更好地了解模型在不同数据集上的表现。...以下是如何在MATLAB中实现深度学习模型的示例。10.1 构建卷积神经网络(CNN)卷积神经网络(CNN)广泛应用于图像分类任务。...我们将以一个简单的CNN为例,来演示如何在MATLAB中构建和训练模型。

    12210

    MATLAB 平台下机器学习流程优化从算法到评估

    模型评估:支持交叉验证、混淆矩阵、ROC曲线等评估指标。2. 数据准备在进行机器学习之前,数据的准备至关重要。通常包括数据的加载、清洗和预处理。以下是一个示例,展示如何加载数据并进行预处理。...模型评估在模型训练完成后,评估模型的性能是非常重要的一步。我们可以使用混淆矩阵、准确率、召回率等指标。4.1 混淆矩阵混淆矩阵可以帮助我们理解模型的分类性能。...交叉验证交叉验证是评估模型性能的常用方法,可以帮助我们更好地了解模型在不同数据集上的表现。...以下是如何在MATLAB中实现深度学习模型的示例。10.1 构建卷积神经网络(CNN)卷积神经网络(CNN)广泛应用于图像分类任务。...我们将以一个简单的CNN为例,来演示如何在MATLAB中构建和训练模型。

    34720

    如何通过交叉验证改善你的训练数据集?

    不要着急,或许你可以稍微不那么严肃的去喝杯热水,在下面的文章中,我会向你介绍整个机器学习过程中如何对你的模型建立评价指标,你只需要有python基础就可以了。...利用这一参数时,保证了生成的样本中的值比例与提供给参数的值比例相同。...这是判断模型性能的一种简单且流行的方法。让我们通过垃圾邮件分类方案来理解这一点。混淆矩阵如下所示。 ? 通过混淆矩阵可以得到以下几个指标: ?...当你理解了上面这些概念之后,利用scikit learn,只需要几行Python代码就可以得到混淆矩阵的结果。...就可以获得一个2 x 2的混淆矩阵(因为垃圾邮件分类是二进制分类),并返回一个涵盖上述所有指标的分类报告。 注意: 真实值作为第一个参数传递,预测值是第二个参数。 ?

    4.9K20

    基于 mlr 包的 K 最近邻算法介绍与实践(下)

    混淆矩阵是测试集中每个实例的真实类和预测类的表格表示。 在 mlr 包中,使用 calculateConfusionMatrix() 函数可计算混淆矩阵。...相对混淆矩阵中,不是真实类和预测类的组合的情况数,而是比例。/ 前面的数字是这一行在这一列的比例,/ 后面的数字是这一列在这一行的比例。...例如,在这个矩阵中,92% 的非糖尿病被正确分类,而 8% 被错误分类为化学糖尿病患者。 混淆矩阵帮助我们了解我们的模型对哪些类分类得好,哪些类分类得差。...= TRUE) 现在我们已经知道如何应用三种常用的交叉验证方法。...嵌套交叉验证 3.1 嵌套交叉验证 当我们对数据或模型执行某种预处理时,比如调优超参数,重要的是要将这种预处理包括到交叉验证中,这样就可以交叉验证整个模型训练过程。

    1.2K41

    MATLAB在数据分析中的应用:从统计推断到机器学习建模

    MATLAB在数据分析中的应用:从统计推断到机器学习建模MATLAB作为一种强大的计算工具,广泛应用于数据分析、统计计算与建模。...本文将介绍如何使用MATLAB进行基本的统计分析与数据建模,重点讲解常用的统计方法、数据处理技巧,以及如何在MATLAB中构建简单的回归模型和进行假设检验。...(data, 'omitnan'));1.3 数据标准化与归一化在进行建模时,某些算法(如线性回归、神经网络等)可能对特征的尺度较为敏感。...分类模型评估:提供了分类模型的常见评估方法,包括混淆矩阵、准确率、精度、召回率、F1分数的计算。K折交叉验证:展示了如何使用交叉验证评估模型的泛化能力,避免过拟合。...在实际应用中,掌握这些技术将为深入分析和预测提供坚实的基础,提升数据分析和建模的能力。

    20310

    机器学习 - 混淆矩阵:技术与实战全方位解析

    本文深入探讨了机器学习中的混淆矩阵概念,包括其数学原理、Python实现,以及在实际应用中的重要性。我们通过一个肺癌诊断的实例来演示如何使用混淆矩阵进行模型评估,并提出了多个独特的技术洞见。...通过本文,你将深入了解混淆矩阵的各个方面,包括其基础概念、数学解析,以及如何在Python和PyTorch环境下进行实战应用。...下一部分,我们将进入代码实战,展示如何在Python和PyTorch环境中使用混淆矩阵进行模型评估。 四、Python实现 混淆矩阵的实现并不复杂,但是用代码来实现它会让理论知识更加具体和实用。...在下一部分中,我们将通过实例来展示如何在实际项目中应用这些概念。 ---- 五、实例分析 理论和代码是用于理解混淆矩阵的重要工具,但将它们应用于实际问题是最终目标。...应用场景的重要性: 混淆矩阵不是一个孤立的工具,它的重要性在于如何根据特定应用场景(如医疗诊断、金融欺诈等)来解读。在某些高风险领域,某些类型的错误(如假负)可能比其他错误更为严重。

    2.6K31

    基于MATLAB的机器学习模型训练与优化

    常用的功能包括:数据预处理:数据清洗、特征选择与提取分类与回归:支持多种算法,如决策树、SVM、kNN等模型优化:超参数调优、交叉验证模型评估:准确率、混淆矩阵等性能评估指标3....模型评估与结果分析在模型训练完成后,我们需要对模型的性能进行评估。常用的评估指标包括准确率、混淆矩阵、ROC曲线等。...(labels, predictedLabels);% 显示混淆矩阵disp('混淆矩阵:');disp(confMat);7....模型部署与实际应用在完成机器学习模型的训练和优化后,接下来的步骤是将模型部署到实际应用中。...本文展示了如何在MATLAB中进行机器学习模型的训练、优化、部署、以及如何处理大规模数据集和复杂应用场景。

    13321

    你知道这11个重要的机器学习模型评估指标吗?

    概览 评估一个模型是建立一个有效的机器学习模型的核心部分 评价指标有混淆矩阵、交叉验证、AUC-ROC曲线等。...混淆矩阵(Confusion Matrix) 混淆矩阵是一个NxN矩阵,其中N是预测的类数。对于我们的案例,我们有N=2,因此我们得到一个2x2矩阵。...你需要记住一个混淆矩阵一些定义: 准确率(Accuracy): 分类模型中所有判断正确的结果占总观测值得比重。...以阈值为0.5为例,下面是对应的混淆矩阵: ? 你可以看到,这个阈值的灵敏度是99.6%,(1-特异性)约为60%。这一对值在我们的ROC曲线中成为一个点。...在Kaggle比赛中,你可能更多地依赖交叉验证分数而不是Kaggle公共分数。通过这种方式,你将确保公共分数不仅仅是偶然的。 我们如何使用任意模型上实现k折? R和Python中的k折编码非常相似。

    3.7K40

    CVPR2020 | Context Prior:在语义分割中引入上下文先验,Cityscapes上81.3%mIoU

    然而,它们捕获了同类的上下文关系,却忽略了不同类别的上下文,如图1(b)所示。当场景中存在混淆类别时,这些方法可能会导致上下文可靠性降低。...在第一行中,红色方框中的sand的中心部分被误分类为大海,因为阴影部分的外观与大海相似。使用基于金字塔的聚合方法,混淆的空间信息的聚合可能导致不良的预测,如(b)所示。...在第二行中,绿色框中的桌子的外观与床的底部相似。基于注意力的方法在没有先验知识的情况下无法有效地区分混淆的空间信息,从而导致预测结果不正确,如(e)所示。...对于Affinity Loss的就提表示,总的来说: 其中,表示Lp,Lu,Lg分别表示Affinity Loss,二元交叉熵损失,和全局损失。Lu,Lg前面的为权重参数,实验时作者设置为均为1。...二元交叉熵损失很好理解,就是预测关联矩阵各处的二值分类损失: 全局损失(j表示第j行,i表示第i列),作者设计了三种: 1、精确率好不好,即被预测为有关联的中确实有关联的比率; 2、召回率好不好,即被正确预测的有关联的占所有真实有关联的比率

    2K10
    领券