首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【DB笔试面试671】在Oracle中,如何监控数据库中的非常耗费性能SQL语句?

题目部分 在Oracle中,如何监控数据库中的非常耗费性能SQL语句?...答案部分 在前边的触发器章节中介绍了如何利用系统触发器监控用户的登陆登出问题,并且可以记录所有的数据库DDL语句,这对数据库的安全审计是非常有帮助的。...利用触发器还可以限制用户在某一段固定时间才能登陆数据库。接下来介绍一下如何利用SQL的实时监控特性来监控数据库中的非常耗费性能SQL语句。...至于消耗小于5秒的CPU或I/O时间的SQL语句一般都是非常高效的,所以不用监控。 考虑到定时任务对Oracle数据库性能的影响,所以,可以通过Oracle的轻量级JOB来实现的。...另外,对于监控中使用的参数表为XB_SQL_PARAMETERS_LHR。JOB每次都会从该表中读取到配置参数的值,该表的查询结果如下图所示: ? 下面简单测试一下上边的监控脚本的效果。

1.7K50

Java中的大数据处理:如何在内存中加载数亿级数据

前言在上一期的内容中,我们深入探讨了Java中常用的内存管理机制,如堆(Heap)、栈(Stack)以及如何使用JVM优化应用程序的性能。...在本期内容中,我们将进一步扩展内存管理的知识,重点介绍如何在Java应用中处理数亿条大数据。...分批次加载:通过循环逐步加载数据,分批次插入ArrayList,避免大数据加载时一次性占用过多内存。内存监控:在大数据场景下,应时刻监控内存使用情况,防止溢出。...注意:在实际应用中,处理如此大量的数据可能会对性能产生显著影响,包括内存使用和处理时间。此外,对于非常大的数据集,可能需要考虑使用更高效的数据结构或数据库系统来提高性能和可扩展性。...全文小结在本篇文章中,我们通过详细的源码分析和案例分享,介绍了如何在Java中处理数亿级数据。

19832
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    构建端到端的开源现代数据平台

    • Destination:这里只需要指定与数据仓库(在我们的例子中为“BigQuery”)交互所需的设置。...Superset 部署由多个组件组成(如专用元数据数据库、缓存层、身份验证和潜在的异步查询支持),因此为了简单起见,我们将依赖非常基本的设置。...您会注意到一些 DAG 已经运行以加载和索引一些示例数据。...理论上这对于数据平台来说是两个非常重要的功能,但正如我们所见,dbt 在这个阶段可以很好地实现它们。尽管如此让我们讨论一下如何在需要时集成这两个组件。...这使其成为多家科技公司大型数据平台不可或缺的一部分,确保了一个大型且非常活跃的开放式围绕它的源社区——这反过来又帮助它在编排方面保持了标准,即使在“第三次浪潮”中也是如此。

    5.5K10

    「数据仓库技术」怎么选择现代数据仓库

    通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。...让我们看看一些与数据集大小相关的数学: 将tb级的数据从Postgres加载到BigQuery Postgres、MySQL、MSSQL和许多其他RDBMS的最佳点是在分析中涉及到高达1TB的数据。...在一次查询中同时处理大约100TB的数据之前,Redshift的规模非常大。Redshift集群的计算能力将始终依赖于集群中的节点数,这与其他一些数据仓库选项不同。...谷歌BigQuery提供可伸缩、灵活的定价选项,并对数据存储、流插入和查询数据收费,但加载和导出数据是免费的。BigQuery的定价策略非常独特,因为它基于每GB存储速率和查询字节扫描速率。...当数据量在1TB到100TB之间时,使用现代数据仓库,如Redshift、BigQuery或Snowflake。

    5K31

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    例如,我们在应用程序依赖的源数据中包含带有隐式时区的时间戳,并且必须将其转换为 Datetime(而非 Timestamp)才能加载到 BigQuery。...同样,在复制到 BigQuery 之前,必须修剪源系统中的字符串值,才能让使用相等运算符的查询返回与 Teradata 相同的结果。 数据加载:一次性加载到 BigQuery 是非常简单的。...但要定期将源上的更改复制到 BigQuery,过程就变复杂了。这需要从源上跟踪更改,并在 BigQuery 中重放它们。为这些极端情况处理大量积压的自动数据加载过程是非常有挑战性的。...用户非常喜欢 BigQuery 日志的查询性能优势、更快的数据加载时间和完全可见性。...我们正在计划将来自财务、人力资源、营销和第三方系统(如 Salesforce)以及站点活动的多个数据集整合到 BigQuery 中,以实现更快的业务建模和决策制定流程。

    4.7K20

    Google BigQuery 介绍及实践指南

    支持多种数据导入方式,例如从 Google Cloud Storage 或其他云服务中加载数据。 5. 安全性与合规性 提供了严格的数据访问控制和身份验证机制。...符合多种行业标准和法规要求,如 GDPR、HIPAA 等。 6. 成本效益 BigQuery 提供按查询付费的定价模型,用户只需为所使用的计算资源付费。...机器学习 可以直接在 BigQuery 中构建和部署机器学习模型,无需将数据移动到其他平台。...数据类型 BigQuery 支持多种数据类型,包括基本类型(如 BOOLEAN、INT64、STRING、DATE 等)和复合类型(如 ARRAY、STRUCT)。...模式(Schema) 每张表都有一个模式,定义了表中的列及其数据类型。 快速入门 准备工作 1.

    57510

    Tapdata Connector 实用指南:数据入仓场景之数据实时同步到 BigQuery

    BigQuery 在企业中通常用于存储来自多个系统的历史与最新数据,作为整体数据集成策略的一部分,也常作为既有数据库的补充存在。...其优势在于: 在不影响线上业务的情况下进行快速分析:BigQuery 专为快速高效的分析而设计, 通过在 BigQuery 中创建数据的副本, 可以针对该副本执行复杂的分析查询, 而不会影响线上业务。...访问账号(JSON):用文本编辑器打开您在准备工作中下载的密钥文件,将其复制粘贴进该文本框中。 数据集 ID:选择 BigQuery 中已有的数据集。...基于 BigQuery 特性,Tapdata 做出了哪些针对性调整 在开发过程中,Tapdata 发现 BigQuery 存在如下三点不同于传统数据库的特征: 如使用 JDBC 进行数据的写入与更新,则性能较差...可视化任务运行监控和告警 包含 20+ 可观测性指标,包括全量同步进度、增量同步延迟等,能够实时监控在运行任务的最新运行状态、日志信息等,支持任务告警。

    8.6K10

    ClickHouse 提升数据效能

    Clickhouse.com 的流量很高 - 每天有数十万。虽然这看起来可能很高,但实际上,对于我们在 ClickHouse 中习惯的大小来说,这个数据量非常小。...虽然 BigQuery 非常适合对复杂查询进行临时分析,但它会对扫描的数据收费,从而导致成本难以预测。...6.BigQuery 到 ClickHouse 有关如何在 BigQuery 和 ClickHouse 之间迁移数据的详细信息,请参阅我们的文档。...这使得盘中数据变得更加重要。为了安全起见,我们在下午 6 点在 BigQuery 中使用以下计划查询进行导出。BigQuery 中的导出每天最多可免费导出 50TiB,且存储成本较低。...8.验证方法 我们的数据被加载到我们的内部数据仓库中,该仓库托管着许多具有大量资源的数据集,因此很难对运行我们的 ClickHouse 增强型 GA 解决方案的成本进行精确评估。

    27710

    ClickHouse 提升数据效能

    Clickhouse.com 的流量很高 - 每天有数十万。虽然这看起来可能很高,但实际上,对于我们在 ClickHouse 中习惯的大小来说,这个数据量非常小。...虽然 BigQuery 非常适合对复杂查询进行临时分析,但它会对扫描的数据收费,从而导致成本难以预测。...6.BigQuery 到 ClickHouse 有关如何在 BigQuery 和 ClickHouse 之间迁移数据的详细信息,请参阅我们的文档。...这使得盘中数据变得更加重要。为了安全起见,我们在下午 6 点在 BigQuery 中使用以下计划查询进行导出。BigQuery 中的导出每天最多可免费导出 50TiB,且存储成本较低。...8.验证方法 我们的数据被加载到我们的内部数据仓库中,该仓库托管着许多具有大量资源的数据集,因此很难对运行我们的 ClickHouse 增强型 GA 解决方案的成本进行精确评估。

    33710

    ClickHouse 提升数据效能

    Clickhouse.com 的流量很高 - 每天有数十万。虽然这看起来可能很高,但实际上,对于我们在 ClickHouse 中习惯的大小来说,这个数据量非常小。...虽然 BigQuery 非常适合对复杂查询进行临时分析,但它会对扫描的数据收费,从而导致成本难以预测。...6.BigQuery 到 ClickHouse 有关如何在 BigQuery 和 ClickHouse 之间迁移数据的详细信息,请参阅我们的文档。...这使得盘中数据变得更加重要。为了安全起见,我们在下午 6 点在 BigQuery 中使用以下计划查询进行导出。BigQuery 中的导出每天最多可免费导出 50TiB,且存储成本较低。...8.验证方法 我们的数据被加载到我们的内部数据仓库中,该仓库托管着许多具有大量资源的数据集,因此很难对运行我们的 ClickHouse 增强型 GA 解决方案的成本进行精确评估。

    30110

    Elastic、Google Cloud和Kyndryl的端到端SAP可观测性方案:深度解析

    Elastic和Google Cloud生态系统提供广泛的选项,将监控服务的数据传输到安全工具中,满足特定需求和架构。...通过在LT复制服务器中安装的BigQuery连接器,企业可以实现SAP数据的近实时复制到BigQuery。...Google BigQuery以其无服务器架构和可扩展的分布式分析引擎,为在大容量SAP应用数据上运行查询提供了强大的平台,同时将其与其他数据源(如Salesforce)集成,实现全组织数据的全面分析。...它还提供了预构建的数据模型,用于准确地将数据仓库中的数据映射为ERP系统中的数据。...当您的数据基础建立在BigQuery中时,您可以利用Kibana作为您的搜索和数据可视化加速层,在其中进行基础设施日志与业务数据的关联。

    17721

    数据仓库技术栈及与AI训练关系

    数据仓库的核心特点: 1. 面向主题:数据仓库集中存储围绕特定主题(如销售、客户、财务等)的数据,这些数据经过提炼,去除了操作型系统中的冗余和不一致性。 2....- ETL (Extract, Transform, Load):数据抽取、转换和加载的过程,负责从源系统中提取数据,转换成统一格式,并加载到数据仓库中。...- 技术选型:包括选择合适的数据库技术(如关系型数据库、列式存储数据库)、大数据平台(如Hadoop、Spark)以及云服务商提供的数据仓库解决方案(如AWS Redshift、Google BigQuery...模型部署与监控:训练好的AI模型可以部署回数据仓库或与之集成,以便在实际业务中应用。数据仓库可以作为模型服务的一部分,提供实时或近实时的数据输入,支持模型的预测和决策输出。...同时,数据仓库也可以用于监控模型性能,通过持续评估模型输出与实际结果的偏差,为模型的持续优化提供反馈。 5.

    24310

    数据仓库分类及应用

    列式数据仓库:优化查询效率 列式数据仓库将数据按列而非行存储,这种存储方式非常适合数据分析中的聚合查询。由于列式存储可以显著减少磁盘I/O操作,因此能够大幅提升查询性能。...例如,Amazon Redshift和Google BigQuery就是利用这一技术的典型例子。 示例:列式数据仓库的应用 一家电商网站希望分析其客户的购买行为。...内存数据仓库:实现实时分析 内存数据仓库将所有数据完全加载到RAM中,从而实现了极快的数据访问速度。这种类型的仓库特别适合需要实时分析的场景,例如SAP HANA就是一个典型的内存数据仓库产品。...示例:内存数据仓库的应用 一家金融公司需要实时监控市场动态,以便快速做出投资决策。...通过采用云数据仓库服务(如Amazon Redshift或Google BigQuery),该公司可以根据业务增长动态扩展其数据存储和处理能力,避免了初期投入大量资金购买硬件设备的风险。

    17610

    拿起Python,防御特朗普的Twitter!

    由于这些(以及更多)原因,我们需要将数据从代码中分离出来。换句话说,我们需要将字典保存在单独的文件中,然后将其加载到程序中。 文件有不同的格式,这说明数据是如何存储在文件中的。...例如,JPEG、GIF、PNG和BMP都是不同的图像格式,用于说明如何在文件中存储图像。XLS和CSV也是在文件中存储表格数据的两种格式。 在本例中,我们希望存储键值数据结构。...利用我们获得的关于Twitter API的知识,我们现在可以更改代码来从Twitter加载推文字符串。 ? ? 当然,如前所述,在代码中存储数据是一种不好的做法。...幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。...数据可视化 BigQuery与Tableau、data Studio和Apache Zeppelin等数据可视化工具很棒。将BigQuery表连接到Tableau来创建上面所示的条形图。

    5.2K30

    Python的10个“秘籍”,这些技术专家全都告诉你了

    随后,他从服务选型、性能瓶颈分析等问题方面,给出了一些优化方法,如通过数据进行优化、IO密集型与CPU密集型的缓存方法、缓存的开发函数、懒加载等方法与技巧。...利用算法在数据中迭代的学习,允许计算机在不显式编程的情况下找到隐藏在数据中的模式。...TrueMetrics合伙人 宋天龙:降低门槛,AutoML是机器学习的未来 宋天龙以《Python在Google BigQuery Machine Learning 中的应用》为题做了演讲。...随后,他讲述了BigQuery ML的应用架构和具体工作流程,使用BigQuery ML首先需要获取原始数据,之后做数据清洗和特征工程、模型训练和调优、模型部署和应用,结果以表的形式进行保存。...如果开发者想用Gluon自己实现检测目标,他还强调要注意损失函数的权重、学习率、多卡训练、状态监控、模型保存、停止训练和数据清洗等方面的问题。

    72820

    15 年云数据库老兵:数据库圈应告别“唯性能论”

    当时我正在 BigQuery 工作,很多人都被吓坏了……我们怎么会比 Azure 慢那么多呢?然而,评测结果与我们从用户那里得到的反馈不太匹配。...因为 BigQuery 没有任何障碍,而且很大程度上是自动调优,所以其在人们心中的形象非常好。...这一功能非常实用,因此该功能发布后不久,其他几个数据库厂商便争相添加了类似功能。 数据并不总以易于查询的格式存储。世界上大量的数据存储在 CSV 文件中,其中许多文件的结构并不完善。...尽管如此,大多数数据库厂商并不重视它们。在 BigQuery 中,我编写了我们的第一个 CSV 拆分器,但当问题比预期更为棘手时,我们派了一名刚毕业的工程师来解决这个问题。...根据数据库系统的体系结构,该查询可以瞬间完成(返回第一页和游标,如 MySQL),对于大表可能需要数小时(如果必须在服务器端复制表,如 BigQuery),或者可能耗尽内存(如果尝试将所有数据拉取到客户端

    18010

    一顿操作猛如虎,涨跌全看特朗普!

    当然,这些都是非常主观的列表,所以请根据你自己的个人意见随意更改这些列表。 在第21行,我们逐个检查了Twitter中的每个单词。...由于这些(以及更多)原因,我们需要将数据从代码中分离出来。换句话说,我们需要将字典保存在单独的文件中,然后将其加载到程序中。 文件有不同的格式,这说明数据是如何存储在文件中的。...例如,JPEG、GIF、PNG和BMP都是不同的图像格式,用于说明如何在文件中存储图像。XLS和CSV也是在文件中存储表格数据的两种格式。 在本例中,我们希望存储键值数据结构。...当然,如前所述,在代码中存储数据是一种不好的做法。当这些数据涉及某种秘密时,情况就更糟了。但是我们知道怎么正确地做。我们从.cred.json加载Twitter凭据。...幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。

    4K40

    使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?

    将数据流到云端 说到流式传输数据,有很多方法可以实现,我们选择了非常简单的方法。我们使用了 Kafka,因为我们已经在项目中广泛使用它了,所以不需要再引入其他的解决方案。...在我们的案例中,我们需要开发一个简单的 Kafka 生产者,它负责查询数据,并保证不丢失数据,然后将数据流到 Kafka,以及另一个消费者,它负责将数据发送到 BigQuery,如下图所示。 ?...当然,为了将旧数据迁移到新表中,你需要有足够的空闲可用空间。不过,在我们的案例中,我们在迁移过程中不断地备份和删除旧分区,确保有足够的空间来存储新数据。 ?...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...其中一个想法是验证不同类型的数据是如何在表中分布的。后来发现,几乎 90% 的数据是没有必要存在的,所以我们决定对数据进行整理。

    3.2K20
    领券