我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。
使用 Kafka,如何成功迁移 SQL 数据库中超过 20 亿条记录?我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。
作者 | Romit Mehta、Vaishali Walia 和 Bala Natarajan
在过去的几年里,数据工程领域的重要性突飞猛进,为加速创新和进步打开了大门——从今天开始,越来越多的人开始思考数据资源以及如何更好地利用它们。这一进步反过来又导致了数据技术的“第三次浪潮”。“第一次浪潮”包括 ETL、OLAP 和关系数据仓库,它们是商业智能 (BI) 生态系统的基石,无法应对大数据的4V[1]的指数增长。由于面向 BI 的栈的潜力有限,我们随后见证了“第二次浪潮”:由于 Hadoop 生态系统(允许公司横向扩展其数据平台)和 Apache Spark(为大规模高效的内存数据处理打开了大门)。
最近,谷歌宣布正式发布 Hive-BigQuery Connector,简化 Apache Hive 和 Google BigQuery 之间的集成和迁移。这个开源连接器是一个 Hive 存储处理程序,它使 Hive 能够与 BigQuery 的存储层进行交互。
原文地址:https://dzone.com/articles/bigquery-data-warehouse-clouds
Google Analytics 无处不在,对于大多数营销功能的统计报告至关重要。作为加入 ClickHouse 之前没有营销分析经验并发现自己定期以博客形式贡献内容的人,我长期以来一直认为 Google Analytics (GA4) 提供了一种快速、无缝的方式来衡量网站。因此,当我们负责报告我们内容策略的成功情况并确保我们制作的内容与您(我们的用户)相关时,GA4 似乎是一个明显的起点。
我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。
注:本文专用于2019年3月29日前的谷歌云专业数据工程师认证考试。此后我也做了一些更新,放在了Extras的部分。
【前言】作为中国的 “Fivetran/Airbyte”, Tapdata 是一个以低延迟数据移动为核心优势构建的现代数据平台,内置 60+ 数据连接器,拥有稳定的实时采集和传输能力、秒级响应的数据实时计算能力、稳定易用的数据实时服务能力,以及低代码可视化操作等。典型用例包括数据库到数据库的复制、将数据引入数据仓库或数据湖,以及通用 ETL 处理等。 随着 Tapdata Connector 的不断增长,我们最新推出《Tapdata Connector 实用指南》系列内容,以文字解析辅以视频演示,还原技术实现细节,模拟实际技术及应用场景需求,提供可以“收藏跟练”的实用专栏。本期实用指南以 SQL Server → BigQuery 为例,演示数据入仓场景下,如何将数据实时同步到 BigQuery。
接下来我们就应用技术手段,基于Python,建立一个工具,可以阅读和分析川普的Twitter。然后判断每条特定的Twitter是否具有川普本人的性格。
标星★公众号 爱你们♥ 作者:Ali Alavi、Yumi、Sara Robinson 编译:公众号进行了全面整理 如你所见,我们手动复制了Trump的一条Twitter,将其分配给一个变量,并使用split()方法将其分解为单词。split()返回一个列表,我们称之为tweet_words。我们可以使用len函数计算列表中的项数。在第4行和第5行中,我们打印前面步骤的结果。注意第5行中的str函数。为什么在那里最后,在第9行中,我们循环遍历tweet_words:也就是说,我们逐个遍历tweet
Chang Stream(变更记录流) 是指collection(数据库集合)的变更事件流,应用程序通过db.collection.watch()这样的命令可以获得被监听对象的实时变更。BigQuery是Google推出的一项Web服务,该服务让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢? 虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成本、可伸缩性和性能,很少考虑另一个关键因素:分析师在这些数据库上编写查询的难易程度。最近,Mode的首席分析师Benn Stancil发布了一篇文章,从另一个角度阐释了哪一款数据库最适合数据分析师。 Benn Stancil认为数据分析工作不可能一蹴而就,分析师在使用数据库的过程中阻碍他们速度的往往不是宏观上的性能,而是编写查询语句时的细节。例如,在
数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢?虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成本、可伸缩性和性能,很少考虑另一个关键因素:分析师在这些数据库上编写查询的难易程度。最近,Mode的首席分析师Benn Stancil发布了一篇文章,从另一个角度阐释了哪一款数据库最适合数据分析师。 Benn Stancil认为数据分析工作不可能一蹴而就,分析师在使用数据库的过程中阻碍他们速度的往往不是宏观上的性能,而是编写查询语句时的细节。例如,在Re
数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢?虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成本、可伸缩性和性能,很少考虑另一个关键因素:分析师在这些数据库上编写查询的难易程度。最近,Mode的首席分析师Benn Stancil发布了一篇文章,从另一个角度阐释了哪一款数据库最适合数据分析师。
本文和封面来源:https://motherduck.com/,爱可生开源社区翻译。
原文地址:https://dzone.com/articles/criteria-for-selecting-a-data-warehouse-platform
作者 | Jordan Tigani 译者 | 红泥 策划 | 李冬梅 随着云计算时代的发展,大数据实际已经不复存在。在真实业务中,我们对大数据更多的是存储而非真实使用,大量数据现在已经变成了一种负债,我们在选择保存或者删除数据时,需要充分考虑可获得价值及各种成本因素。 十多年来,人们一直很难从数据中获得有价值的参考信息,而这被归咎于数据规模。“对于你的小系统而言,你的数据量太庞大了。”而解决方案往往是购买一些可以处理大规模数据的新机器或系统。但是,当购买了新的设备并完成迁移后,人们发现仍然难以处
随着区块链技术的使用越来越广泛,存储在区块链上的数据量也在增加。这是因为更多的人在使用该技术,而每笔交易都会给区块链增加新的数据。此外,区块链技术的使用已经从简单的资金转移应用,如涉及使用比特币的应用,发展到更复杂的应用,包括智能合约之间的相互调用。这些智能合约可以产生大量的数据,从而造成了区块链数据的复杂性和规模的增加。随着时间的推移,这导致了更大、更复杂的区块链数据。
作者 | Steef-Jan Wiggers 译者 | 明知山 策划 | 丁晓昀 最近,谷歌宣布 Bigtable 联邦查询普遍可用,用户通过 BigQuery 可以更快地查询 Bigtable 中的数据。此外,查询无需移动或复制所有谷歌云区域中的数据,增加了联邦查询并发性限制,从而缩小了运营数据和分析数据之间长期存在的差距。 BigQuery 是谷歌云的无服务器、多云数据仓库,通过将不同来源的数据汇集在一起来简化数据分析。Cloud Bigtable 是谷歌云的全托管 NoSQL 数据库,主要用
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 文 | 孙镜涛 来源 | InfoQ 数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢?虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成本、可伸缩性和性能,很少考虑另一个关键因素:分析师在这些数据库上编写查询的难易程度。最近,Mode的首席分析师Benn Stancil发布了一篇文章,从另一个角度阐释了哪一款数据库最适合数据分析师。 Benn Stancil认为数据分
顶级云计算数据仓库展示了近年来云计算数据仓库市场发展的特性,因为很多企业更多地采用云计算,并减少了自己的物理数据中心足迹。
区块链技术和加密货币在吸引越来越多的技术、金融专家和经济学家们眼球的同时,也给与了他们无限的想象空间。从根本上来说,加密货币只是底层区块链技术的应用之一,而伴随着区块链技术的不断突破与发展,“区块链+”这一概念正在不断地深入人心。
本文由 Cloudberry Database 社区编译自 MotherDuck 官网博文《PERF IS NOT ENOUGH》,原作者为 Jordan Tigani( MontherDuck 联合创始人兼 CEO),译文较原文稍有调整。
最近随着Snowflake上市后市值的暴增(目前700亿美金左右),整个市场对原生云数仓都关注起来。近日,一家第三方叫GigaOM的公司对主流的几个云数仓进行了性能的对比,包括Actian Avalanche、Amazon Redshift、Microsoft Azure Synapse、Google BigQuery、Snowflake,基本涵盖了目前市场上主流的云数仓服务。
如今,Python真是无处不在。尽管许多看门人争辩说,如果他们不使用比Python更难的语言编写代码,那么一个人是否真是软件开发人员,但它仍然无处不在。
在 Twitter 上,我们每天都要实时处理大约 4000 亿个事件,生成 PB 级的数据。我们使用的数据的事件源多种多样,来自不同的平台和存储系统,例如 Hadoop、Vertica、Manhattan 分布式数据库、Kafka、Twitter Eventbus、GCS、BigQuery 和 PubSub。
在 0.11.0 中,我们默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件 listing 的性能。在reader方面,用户需要将其设置为 hoodie.metadata.enable = true 以从中受益。元数据表和相关文件listing 仍然可以通过设置hoodie.metadata.enable=false来关闭此功能。因此,使用异步表服务部署 Hudi 的用户需要配置锁服务。如果无需使用此功能,可以通过额外设置这个配置 hoodie.metadata.enable = false 像以前一样使用 Hudi。
【新智元导读】谷歌BigQuery的公共大数据集可提供训练数据和测试数据,TensorFlow开源软件库可提供机器学习模型。运用这两大谷歌开放资源,可以建立针对特定商业应用的模型,预测用户需求。 Lak Lakshmanan 是谷歌云服务团队的大数据与机器学习专业服务成员,他在谷歌云平台写了下文,以帮助用户使用谷歌云预测商业需求。 所有商业业务都会设法预测客户需求。如果你开饭馆,你需要预测明天要做多少桌饭、顾客会点哪些菜,这样你才能知道需要购买那些食材、厨房需要多少人手。如果你卖衬衫,你要提前预测,你应该从
今天看到了一篇 AI前线的文章谷歌BigQuery ML正式上岗,只会用SQL也能玩转机器学习!。正好自己也在力推 StreamingPro的MLSQL。 今天就来对比下这两款产品。
区块链技术作为比特币的核心模块,由中本聪在 2009 年首次实现,它是一种分布式的公共账本交易系统。比特币是一种分散的数字货币,它通过分布式的方式储存交易,以弥补金融行业的缺陷。 经过近十年的发展,比
在这篇文章中,我们将纯粹用SQL实现含有一个隐藏层(以及带 ReLU 和 softmax 激活函数)的神经网络。这些神经网络训练的步骤包含前向传播和反向传播,将在 BigQuery 的单个SQL查询语句中实现。当它在 BigQuery 中运行时,实际上我们正在成百上千台服务器上进行分布式神经网络训练。听上去很赞,对吧?
在 0.11.0 中,默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件listing的性能。在reader方面,用户需要将其设置为 true 以从中受益。元数据表和相关文件listing 仍然可以通过设置hoodie.metadata.enable=false来关闭此功能。因此,使用异步表服务部署 Hudi 的用户需要配置锁服务。如果此功能与您无关,您可以通过额外设置这个配置 hoodie.metadata.enable=false 像以前一样使用 Hudi。
选自Medium 作者:Harisankar Haridas 机器之心编译 参与:陈韵竹、思源 我们熟知的SQL是一种数据库查询语句,它方便了开发者在大型数据中执行高效的操作。但本文从另一角度嵌套SQ
在讨论细节之前,我想对整个过程做一个概述。这个流程图显示了我需要训练的 3 个模型,以及将模型连接在一起以生成输出的过程。
本文教你如何在BigQueryML中使用K均值聚类对数据进行分组,进而更好地理解和描述。
最近因为工作需要对VLDB的一些论文进行了阅读。其中包括谷歌新发表的F1数据库的分析。解读谷歌论文一直都是不太容易的。因为谷歌向来都是说一半藏一半。这篇论文相对来说还是写的比较开放的,还是不能免俗。
冷链物流的复杂性、成本和风险使其成为物联网的理想使用案例。以下是我们如何构建一个完整的物联网解决方案,以应对这些挑战。
数据保留时间对探索会有影响,探索里能选择的最大时间范围就是你设置的保留时间,如果你没有设置,GA4里的数据保留默认是2个月,探索里最多可以对最近两个月的数据做分析,所以,一定要将数据保留事件设置为最长时间。
去年12月,中国大部分地区早已入冬,而在2000多公里外的新加坡,还停留在温暖的26度,气候宜人。
GH-Archive通过从GitHub REST API中摄取大部分这些事件,从GitHub记录大量数据。这些事件以GSON格式从GitHub发送到GH-Archive,称为有效负载。以下是编辑问题时收到的有效负载示例:
全球成千上万的公司,无论是中型企业还是大型企业,都依赖于强大且高效的SAP系统来支持其核心运营。从销售到财务,从仓库管理到生产计划与执行,企业的持续性、收入和客户成功高度依赖于在企业资源规划(ERP)架构上运行的流程。然而,维持SAP性能的最佳状态、确保数据安全以及识别潜在问题可能是一项复杂的挑战。传统的监控解决方案通常无法提供全面的数据视图和深入的见解。
GNE 正式版上线已经一周了,我想知道有多少人使用 pip 安装了 GNE,应该如何操作呢?
大数据文摘翻译:于丽君/ 校对:瑾儿小浣熊(转载请保留) 摘要: 谷歌近期发表了一篇关于最新大数据系统的论文,是关于Mesa这一全球部署的数据仓库,它可以在数分钟内提取上百万行,甚至可以在一个数据中心发生故障时依然运作。 谷歌正在为其一项令人兴奋的产品揭开面纱,它可能成为数据库工程史上的又一个壮举,这就是一个名为Mesa的数据仓库系统,它可以处理几乎实时的数据,并且即使一整个数据中心不幸脱机也可以发挥它的性能。谷歌工程师们正在为下个月将在中国举行的盛大的数据库会议准备展示其关于Mesa的论文。 该篇论文的
AWS Athena和Google BigQuery都是亚马逊和谷歌各自云上的优秀产品,有着相当高的用户口碑。它们都属于无服务器交互式查询类型的服务,能够直接对位于云存储中的数据进行访问和查询,免去了数据搬运的麻烦。对于在公有云的原生存储上保存有大量数据的许多客户而言,此类服务无疑非常适合进行灵活的查询分析,帮助业务进行数据洞察。
领取专属 10元无门槛券
手把手带您无忧上云