首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Mapreduce作业的Mapper中获取数据分片的文件路径?

在MapReduce作业的Mapper中,可以通过使用FileSplit类来获取数据分片的文件路径。FileSplit类是Hadoop提供的用于表示输入文件分片的类。它包含了输入文件的路径、起始偏移量和分片长度等信息。

以下是获取数据分片的文件路径的步骤:

  1. 在Mapper类中导入org.apache.hadoop.mapreduce.lib.input.FileSplit包。
  2. 在Mapper类的map方法中,使用Context对象获取当前数据分片的InputSplit对象。Context对象可以通过setup方法中的参数传入。
  3. InputSplit对象转换为FileSplit对象,可以使用类型转换或instanceof运算符进行判断。
  4. 通过FileSplit对象的getPath方法即可获取数据分片的文件路径。

以下是示例代码:

代码语言:txt
复制
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import java.io.IOException;

public class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
    
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 获取当前数据分片的InputSplit对象
        FileSplit fileSplit = (FileSplit) context.getInputSplit();
        
        // 获取数据分片的文件路径
        String filePath = fileSplit.getPath().toString();
        
        // 在这里可以根据需要进行后续操作,例如读取文件内容等
        
        // 将结果写入输出
        context.write(new Text(filePath), value);
    }
}

上述代码中,FileSplit类用于获取输入分片的文件路径,并将其作为键值对的键写入输出。注意,这里的输出类型是Text,可根据需求进行调整。

对于该问题,腾讯云并没有特定的产品或链接来解决。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Hadoop-2.4.1学习之如何确定Mapper数量

    MapReduce框架的优势是可以在集群中并行运行mapper和reducer任务,那如何确定mapper和reducer的数量呢,或者说Hadoop如何以编程的方式控制作业启动的mapper和reducer数量呢?在《Hadoop-2.4.1学习之Mapper和Reducer》中曾经提及建议reducer的数量为(0.95~1.75 ) * 节点数量 * 每个节点上最大的容器数,并可使用方法Job.setNumReduceTasks(int),mapper的数量由输入文件的大小确定,且没有相应的setNumMapTasks方法,但可以通过Configuration.set(JobContext.NUM_MAPS, int)设置,其中JobContext.NUM_MAPS的值为mapreduce.job.maps,而在Hadoop的官方网站上对该参数的描述为与MapReduce框架和作业配置巧妙地交互,并且设置起来更加复杂。从这样一句含糊不清的话无法得知究竟如何确定mapper的数量,显然只能求助于源代码了。

    02

    【Hadoop】17-在集群上运行MapRedece

    本地作业运行器使用单JVM运行一个作业,只要作业需要的所有类都在类路径(classpath)上,那么作业就可以正常执行。在分布式的环境中,情况稍微复杂一些。开始的时候作业的类必须打包成一个作业JAR文件并发送给集群。Hadoop通过搜索驱动程序的类路径自动找到该作业JAR文件,该类路径包含JonfConf或Job上的setJarByClass()方法中设置的类。另一种方法,如果你想通过文件路径设置一个指定的JAR文件,可以使用setJar()方法。JAR文件路径可以是本地的,也可以是一个HDFS文件路径。通过使用像Ant或Maven的构建工具可以方便地创建作业的JAR文件。当给定范例所示的POM时,下面的Maven命令将在包含所有已编译的类的工程目录中创建一个名为hadoop-example.jar的JAR文件:

    04

    Hadoop-2.4.1学习之Mapper和Reducer

    MapReduce允许程序员能够容易地编写并行运行在大规模集群上处理大量数据的程序,确保程序的运行稳定可靠和具有容错处理能力。程序员编写的运行在MapReduce上的应用程序称为作业(job),Hadoop既支持用Java编写的job,也支持其它语言编写的作业,比如Hadoop Streaming(shell、python)和Hadoop Pipes(c++)。Hadoop-2.X不再保留Hadoop-1.X版本中的JobTracker和TaskTracker组件,但这并不意味着Hadoop-2.X不再支持MapReduce作业,相反Hadoop-2.X通过唯一的主ResourceManager、每个节点一个的从NodeManager和每个应用程序一个的MRAppMaster保留了对MapReduce作业的向后兼容。在新版本中MapReduce作业依然由Map和Reduce任务组成,Map依然接收由MapReduce框架将输入数据分割为数据块,然后Map任务以完全并行的方式处理这些数据块,接着MapReduce框架对Map任务的输出进行排序,并将结果做为Reduce任务的输入,最后由Reduce任务输出最终的结果,在整个执行过程中MapReduce框架负责任务的调度,监控和重新执行失败的任务等。

    02

    【最全的大数据面试系列】Hadoop面试题大全(二)

    ZKFailoverController主要职责   1)健康监测:周期性的向它监控的NN发送健康探测命令,从而来确定某个NameNode是否处于健康状态,如果机器宕机,心跳失败,那么zkfc就会标记它处于一个不健康的状态。   2)会话管理:如果NN是健康的,zkfc就会在zookeeper中保持一个打开的会话,如果NameNode同时还是Active状态的,那么zkfc还会在Zookeeper中占有一个类型为短暂类型的znode,当这个NN挂掉时,这个znode将会被删除,然后备用的NN,将会得到这把锁,升级为主NN,同时标记状态为Active。   3)当宕机的NN新启动时,它会再次注册zookeper,发现已经有znode锁了,便会自动变为Standby状态,如此往复循环,保证高可靠,需要注意,目前仅仅支持最多配置2个NN。   4)master选举:如上所述,通过在zookeeper中维持一个短暂类型的znode,来实现抢占式的锁机制,从而判断那个NameNode为Active状态

    02

    hadoop中的一些概念——数据流

    数据流   首先定义一些属于。MapReduce作业(job)是客户端需要执行的一个工作单元:它包括输入数据、MapReduce程序和配置信息。Hadoop将作业分成若干个小任务(task)来执行,其中包括两类任务,map任务和reduce任务。   有两类节点控制着作业执行过程,:一个jobtracker以及一系列tasktracker。jobtracker通过调度tasktracker上运行的任务,来协调所有运行在系统上的作业。tasktracker在运行任务的同时,将运行进度报告发送给jobtracker,jobtracker由此记录每项作业任务的整体进度情况。如果其中一个任务失败,jobtracker可以再另外衣tasktracker节点上重新调度该任务。   Hadoop将MapReduce的输入数据划分成等长的小数据块,称为输入分片(input split)或简称分片。Hadoop为每个分片构建一个map任务,并由该任务来运行用户自定义的map函数从而处理分片中的每条记录。   拥有许多分片,意味着处理每个分片所需要的时间少于处理整个输入数据所花的时间。因此,如果我们并行处理每个分片,且每个分片数据比较小,那么整个处理过程将获得更好的负载平衡,因为一台较快的计算机能够处理的数据分片比一台较慢的计算机更多,且成一定比例。即使使用相同的机器,处理失败的作业或其他同时运行的作业也能够实现负载平衡,并且如果分片被切分的更细,负载平衡的质量会更好。   另一方面,如果分片切分的太小,那么管理分片的总时间和构建map任务的总时间将决定着作业的整个执行时间。对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,默认是64MB,不过可以针对集群调整这个默认值,在新建所有文件或新建每个文件时具体致死那个即可。   Hadoop在存储有输入数据(Hdfs中的数据)的节点上运行map任务,可以获得最佳性能。这就是所谓的数据本地化优化。现在我们应该清楚为什么最佳分片大小应该与块大小相同:因为它是确保可以存储在单个节点上的最大输入块的大小。如果分片跨越这两个数据块,那么对于任何一个HDFS节点,基本上不可能同时存储这两个数据块,因此分片中的部分数据需要通过网络传输到map任务节点。与使用本地数据运行整个map任务相比,这种方法显然效率更低。   map任务将其输出写入本地硬盘,而非HDFS,这是为什么?因为map的输出是中间结果:该中间结果由reduce任务处理后才能产生最终输出结果,而且一旦作业完成,map的输出结果可以被删除。因此,如果把它存储在HDFS中并实现备份,难免有些小题大做。如果该节点上运行的map任务在将map中间结果传送给reduece任务之前失败,Hadoop将在另一个节点上重新运行这个map任务以再次构建map中间结果。   reduce任务并不具备数据本地化的优势——单个reduce任务的输入通常来自于所有mapper的输出。在下面的李宗中,我们仅有一个reduce任务,其输入是所有map任务的输出。因此,排过序的map输出需要通过网络传输发送到运行reduce任务的节点。数据在reduce端合并,然后由用户定义的reduce函数处理。reduce的输出通常存储在HDFS中以实现可靠存储。对于每个reduce输出的HDFS块,第一个副本存储在本地节点上,其他副本存储在其他机架节点中。因此,reduce的输出写入HDFS确实需要占用网络带宽,但这与正常的HDFS流水线写入的消耗一样。   一个reduce任务的完成数据流如下:虚线框表示节点,虚线箭头表示节点内部数据传输,实线箭头表示节点之间的数据传输。

    02
    领券