TensorFlow 使用图来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是 [batch, height, width, channels].
在第 11 章,我们讨论了几种可以明显加速训练的技术:更好的权重初始化,批量标准化,复杂的优化器等等。 但是,即使采用了所有这些技术,在具有单个 CPU 的单台机器上训练大型神经网络可能需要几天甚至几周的时间。
选自Github 机器之心编译 参与:Jane W、李泽南 TensorFlow 是一个由谷歌发布的机器学习框架,在这篇文章中,我们将阐述 TensorFlow 的一些本质概念。相信你不会找到比本文更
TensorFlow是一个由Google创建的开源软件库,用于实现机器学习和深度学习系统。这两个名称包含一系列强大的算法,它们共享一个共同的挑战——让计算机学习如何自动识别复杂模式和/或做出最佳决策。
x1、x2 表示输入,w1、w2 分别是 x1 到 y 和 x2 到 y 的权重,y=x1w1+x2w2。
机器学习是时下非常流行的话题,而Tensorflow是机器学习中最有名的工具包。TensorflowSharp是Tensorflow的C#语言表述。本文会对TensorflowSharp的使用进行一个简单的介绍。
选自Medium 机器之心编译 参与:李泽南 在谷歌 TensorFlow API 推出后,构建属于自己的图像识别系统似乎变成了一件轻松的任务。本文作者利用谷歌开源的 API 中 MobileNet 的组件很快开发出了识别图像和视频内物体的机器学习系统,让我们看看她是怎么做到的。 市面上已有很多种不同的方法来进行图像识别,谷歌最近开源的 TensorFlow Object Detection API 是其中非常引人注目的一个,任何来自谷歌的产品都是功能强大的。所以,让我们来看看它能够做到什么吧,先看结果:
在最近的一篇文章中,我们提到,TensorFlow 2.0经过重新设计,重点关注开发人员的工作效率、简单性和易用性。
作者 | Chidume Nnamdi ???? 翻译 | linlh、余杭、通夜 编辑 | 王立鱼、约翰逊·李加薪 原文链接: https://blog.bitsrc.io/learn-t
1、tf.train.queue_runner.add_queue_runner函数
TensorFlow 是一种采用数据流图(data flow graphs),用于数值计算的开源软件库。在 Tensorflow 中,所有不同的变量和运算都是储存在计算图,所以在我们构建完模型所需要的图之后,还需要打开一个会话(Session)来运行整个计算图 通常使用import tensorflow as tf来载入TensorFlow 在TensorFlow程序中,系统会自动维护一个默认的计算图,通过tf.get_default_graph函数可以获取当前默认的计算图。除了使用默认的计算图,可以使用tf.Graph函数来生成新的计算图,不同计算图上的张量和运算不会共享 在TensorFlow程序中,所有数据都通过张量的形式表示,张量可以简单的理解为多维数组,而张量在TensorFlow中的实现并不是直接采用数组的形式,它只是对TensorFlow中运算结果的引用。即在张量中没有真正保存数字,而是如何得到这些数字的计算过程 如果对变量进行赋值的时候不指定类型,TensorFlow会给出默认的类型,同时在进行运算的时候,不会进行自动类型转换 会话(session)拥有并管理TensorFlow程序运行时的所有资源,所有计算完成之后需要关闭会话来帮助系统回收资源,否则可能会出现资源泄漏问题 一个简单的计算过程:
对于深度学习领域的从业者而言,Keras 肯定不陌生,它是深度学习的主流框架之一。2015 年 3 月 27 日,谷歌软件工程师、Keras 之父 Francois Chollet 在其 GitHub 上提交并公布了 Keras 的首个版本。作为使用纯 Python 编写的深度学习框架,Keras 的代码更加简单方便,适用于初学者。此外,Keras 具有很强的易扩展性,能够直观地定义神经网络,函数式 API 的使用令用户可以将层定义为函数。
本文介绍了TensorFlow中Saver的使用方法,包括如何创建Saver对象、如何恢复模型、如何保存和恢复变量等内容。同时,还提供了一些示例和代码,以帮助读者更好地理解Saver的使用。
1.Tensor介绍 Tensor(张量)是Tensorflow中最重要的数据结构,用来表示Tensorflow程序中的所有数据。Tensor本是广泛应用在物理、数学领域中的一个物理量。那么在Tensorflow中该如何理解Tensor的概念呢? 实际上,我们可以把Tensor理解成N维矩阵(N维数组)。其中零维张量表示的是一个标量,也就是一个数;一维张量表示的是一个向量,也可以看作是一个一维数组;二维张量表示的是一个矩阵;同理,N维张量也就是N维矩阵。 在计算图模型中,操作间所传递的数据都可以看做是Te
选自exafunction 机器之心编译 编辑:赵阳 对于并行运算,GPU 的应用效率是最高的。 在云服务中使用 GPU 是获得低延迟深度学习推理服务最经济的方式。使用 GPU 的主要瓶颈之一是通过 PCIe 总线在 CPU 和 GPU 内存之间复制数据的速度。对于许多打算用于高分辨率图像和视频处理的深度学习模型来说,简单地复制输入会大大增加系统的整体延迟,特别是当非推理任务,如解压缩和预处理也可以在 GPU 上执行时。 在这篇博文中,研究者们将展示如何在 TensorFlow 中直接通过 GPU 内存传
一个运行TensorFlow操作的类。会话对象封装了执行操作对象和计算张量对象的环境。
在TensorFlow中,最常用的可视化方法有三种途径,分别为TensorFlow与OpenCv的混合编程、利用Matpltlib进行可视化、利用TensorFlow自带的可视化工具TensorBoard进行可视化。这三种方法,在前面博客中都有过比较详细的介绍。但是,TensorFlow中最重要的可视化方法是通过TensorBoard、tf.summary和tf.summary.FileWriter这三个模块相互合作来完成的。
在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。
Tensorflow是Google推出的机器学习开源神器,对Python有着良好的语言支持,支持CPU,GPU和Google TPU等硬件,并且已经拥有了各种各样的模型和算法。目前,Tensorflow已被广泛应用于文本处理,语音识别和图像识别等多项机器学习和深度学习领域。
注意tensorflow会检查类型,不指定类型时按照默认类型,如1认为是int32, 1.0认为是float32
机器之心报道 编辑:杜伟、小舟 以后在本地运行 Keras Bazel 测试将不再花费几小时,只需要几分钟。 对于深度学习领域的从业者而言,Keras 肯定不陌生,它是深度学习的主流框架之一。2015 年 3 月 27 日,谷歌软件工程师、Keras 之父 Francois Chollet 在其 GitHub 上提交并公布了 Keras 的首个版本。作为使用纯 Python 编写的深度学习框架,Keras 的代码更加简单方便,适用于初学者。此外,Keras 具有很强的易扩展性,能够直观地定义神经网络,函数式
大家好,今天我来为大家介绍如何在Java开发中使用人工智能(AI)。既然要使用AI,那么我们就需要用到一些最新的技术和工具,不过不用担心,我将在本篇教程中为大家详细讲解如何快速上手使用AI。废话不多说,让我们一起来看看吧!
翻译:穆文&韩小阳 校对:寒小阳 & 龙心尘 导 读 之前的课程里介绍了自然语言处理当中的一些问题,以及设计出来的一些相应的算法。research的东西还是落地到工程应用上比较有价值,之前也手撸过一些toy project,不过这些实现要用在工程中,总是有那么些虚的,毕竟稳定性和效率未必能够保证。所幸的是,深度学习热度持续升温的大环境下,各种大神和各家大厂也陆续造福民众,开源了一些深度学习框架,在这些开源框架的基础上去搭建和实现自己想要的深度学习网络结构就简单和稳定得多了。 有时候选择多了也是麻烦,对框架
一.安装 目前用了tensorflow、deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用。
目前用了tensorflow、deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用。 慢慢长征路:安装过程如下 WIN10: anaconda3.5: PYTHON3.6: tensorflow1.4:
GPU已被证明是加速深度学习和AI工作负载(如计算机视觉和自然语言处理(NLP))的有效解决方案。如今许多基于深度学习的应用程序在其生产环境中使用GPU设备,例如用于数据中心的NVIDIA Tesla和用于嵌入式平台的Jetson。这提出了一个问题:如何从NVIDIA GPU设备获得最佳推理性能?
---- CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络去学习,用 TensorFlow 去训练模型,基本的模型和算法包括 word2vec,softmax,RNN,LSTM,GRU,CNN,大型数据的 seq2seq,还有未来比较火热的研究方向 DMN,还有模型的调优。 今天先不直接进入理论学习,而是先学习一下 TensorFlow,在原课程里,这部分在第7讲,但是我觉得最高效地学习算法的方式,就是一边
TensofFlow文档已经被翻译为中文,欢迎大家学习参考使用,下面节选基本使用方法一节,完整内容可以下载或访问官方网站。 基本使用 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数
tensorflow的第一个词tensor表明了它的数据结构,那么flow则体现了它的计算模型。flow翻译成中文就是“流”,它直观地表达了张量之间通过计算相互转化的过程。tensorflow这一个通过计算图的形式来表述计算的编程系统。tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系。
TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。它是目前应用最广泛的机器(深度)学习框架,利用TensorFlow,你可以很快的构建深度学习模型,目前在工业界应用非常广泛,截止到目前最新版本是tf.1.11。
在使用TensorFlow进行深度学习开发时,如果你遇到了module 'tensorflow' has no attribute 'Session'的错误,那么本篇博客将会解释该错误的原因以及如何解决它。
OpenVINO中模型优化器(Model Optimizer)支持tensorflow/Caffe模型转换为OpenVINO的中间层表示IR(intermediate representation),从而实现对模型的压缩与优化,方便推断引擎更快的加载与执行这些模型。以tensorflow对象检测框架支持的SSD MobileNet v2版本的模型为例,实现从tensorflow的pb文件到IR格式的bin与xml文件生成。全部的过程可以分为三个部分,下面一一解析!
一.安装 目前用了tensorflow、deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用。 慢
如果你在使用TensorFlow时遇到了"AttributeError: module 'tensorflow' has no attribute 'placeholder'"的错误,这意味着你正在使用的TensorFlow版本与你的代码不兼容。这个错误通常是因为在TensorFlow 2.0及更高版本中,'placeholder'被移除了。 为了解决这个问题,有几种方法可以尝试:
作者:刘光聪 ,中兴通讯高级系统架构师,专注机器学习算法,分布式系统架构与优化。 原文:TensorFlow架构与设计:会话生命周期(http://www.jianshu.com/p/667cbb20d802) 责编:王艺 CSDN AI记者,投稿、寻求报道、深入交流请邮件wangyi@csdn.net或扫描文末二维码添加微信。 相关文章: 图解TensorFlow架构与设计 TensorFlow架构与设计:图模块 TensorFlow的系统结构以C API为界,将整个系统分为「前端」和「后端」两个
在本文中我将展示如何将Jetson Nano开发板连接到Kubernetes集群以作为一个GPU节点。我将介绍使用GPU运行容器所需的NVIDIA docker设置,以及将Jetson连接到Kubernetes集群。在成功将节点连接到集群后,我还将展示如何在Jetson Nano上使用GPU运行简单的TensorFlow 2训练会话。
本章介绍如何设置开发环境,以使用 TensorFlow 构建所有 iOS 或 Android 应用,本书其余部分对此进行了讨论。 我们不会详细讨论可用于开发的所有受支持的 TensorFlow 版本,OS 版本,Xcode 和 Android Studio 版本,因为可以在 TensorFlow 网站或通过 Google。 相反,我们将在本章中简要讨论示例工作环境,以便我们能够快速了解可使用该环境构建的所有出色应用。
OpenAI Gym是学习和开发强化学习算法的好地方。它提供了许多有趣的游戏(所谓的“环境”),你可以将自己的策略用于测试。例如,它有一些简单的游戏,例如在小推车上平衡垂直杆(“ CartPole-v1”),将钟摆摆到直立位置(“ Pendulum-v0”),以及一些经典的电子游戏,例如Space Invader 和Pin Ball。
来源:Google blog 编译:马文 Cecilia 【新智元导读】谷歌宣布推出 TensorFlow Lite,这是 TensorFlow 的针对移动设备和嵌入式设备的轻量级解决方案。这个框架针对机器学习模型的低延迟推理进行了优化,重点是小内存占用和快速性能。利用TensorFlow Lite,即使在半监督的设置下,也可实现在手机端跨平台训练ML模型。 今年早些时候,谷歌推出了 Android Wear 2.0,这是“设备上”(on-device)机器学习技术用于智能通讯的第一款产品。这使得基于云的
通常,我们在使用Tensorflow低级API编程时(非Eager模式), 一般有下面三个步骤:
2015年11月份,谷歌宣布开源了深度学习框架TensorFlow,一年之后,TensorFlow就已经成长为了GitHub上最受欢迎的深度学习框架,尽管那时候TensorFlow的版本号还是v0.11。现在,TensorFlow的一岁生日之后两个月,TensorFlow社区终于决定将TensorFlow的版本号升至1.x,并刚刚发布了TensorFlow 1.0.0-alpha,其新增了实验性的Java API ,并且提升了对Android的支持。 发布地址 --官网:https://www.tensor
本文主要的介绍内容是TensorFlow的Graph和Session两个概念,即运算图和会话。
MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会作为深度学习的入门样例。下面大致介绍这个数据集的基本情况,并介绍temsorflow对MNIST数据集做的封装。tensorflow的封装让使用MNIST数据集变得更加方便。MNIST数据集是NIST数据集的一个子集,它包含了60000张图片作为训练数据,10000张图片作为测试数据。在MNIST数据集中的每一张图片都代表了0~9中的一个数字。图片的大小都为28*28,且数字都会出现在图片的正中间。
TensorFlow支持各种异构平台,支持多CPU/GPU、服务器、移动设备,具有良好的跨平台的特性;TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性;此外,TensorFlow架构i具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众。
一、Ubunutu20.4系统设置root登录及密钥登录 1、进入服务器主界面,将系统更换为Ubuntu20.4 https://console.cloud.tencent.com/cvm/insta
在TensorFlow1.0时代,采用的是静态计算图,需要先使用TensorFlow的各种算子创建计算图,然后再开启一个会话Session,显式执行计算图。
因为神经网络本质上执行大量计算,所以它们在移动设备上尽可能高效地运行是很重要的。一个高效的模型能够在实时视频上获得实时结果 - 无需耗尽电池或使手机变热,就可以在其上煎鸡蛋。
TensorFlow 是 Google 最近发布的新的机器学习和图计算库。 其 Python 接口可确保通用模型的优雅设计,而其编译后的后端可确保速度。
本文介绍了TensorFlow的基本概念,包括张量、计算图、操作等,以及TensorFlow在程序设计中的基本步骤。此外,还探讨了TensorFlow的两种主要使用方式:构建计算图和运行计算图。
领取专属 10元无门槛券
手把手带您无忧上云